2,092 research outputs found

    Turnstile behaviour of the Cooper-pair pump

    Full text link
    We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling EJ < EC. These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF-signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the gate plane. We show that this reproduces the turnstile-kind of behavior. To overcome the contradiction between the obtained e-periodic DC-modulation and a pure 2e-behaviour in the RF-measurements, we base our observations on a general principle that the system always minimises its energy. It suggests that if the excess quasiparticles in the system have a freedom to tunnel, they will organize themselves to the configuration yielding the highest current.Comment: 29 pages, 16 figures, uses REVTeX and graphicx-packag

    The Relation between Radio Polarization and Gamma-ray Emission in AGN Jets

    Full text link
    We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LAT during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.Comment: 6 pages, 3 figures, to appear in the proceedings of "High Energy Phenomena In Relativistic Outflows II" (Buenos Aires, Argentina, October 26-30, 2009) International Journal of Modern Physics

    Multi-frequency VLBA study of the blazar S5 0716+714 during the active state in 2004: I. Inner jet kinematics

    Full text link
    We observed the blazar \object{0716+714} with the VLBA during its active state in 2003-2004. In this paper we discuss multi-frequency analysis of the inner jet (first 1 mas) kinematics. The unprecedentedly dense time sampling allows us to trace jet components without misidentification and to calculate the component speeds with good accuracy. In the smooth superluminal jet we were able to identify and track three components over time moving outwards with relatively high apparent superluminal speeds (8.5-19.4 cc), which contradicts the hypothesis of a stationary oscillating jet in this source. Component ejections occur at a relatively high rate (once in two months), and they are accompanied by mm-continuum outbursts. Superluminal jet components move along wiggling trajectories, which is an indication of actual helical motion. Fast proper motion and rapid decay of the components suggest that this source should be observed with the VLBI at a rate of at least once in one or two months in order to trace superluminal jet components without confusion.Comment: 4 pages, 3 figures, Astronomy & Astrophysics Letter, language corrections adde

    Causal connection in parsec-scale relativistic jets: results from the MOJAVE VLBI survey

    Full text link
    We report that active galactic nucleus (AGN) jets are causally connected on parsec scales, based on 15 GHz Very Long Baseline Array (VLBA) data from a sample of 133 AGN jets. This result is achieved through a new method for measuring the product of the jet Lorentz factor and the intrinsic opening angle Gamma*theta_j from measured apparent opening angles in flux density limited samples of AGN jets. The Gamma*theta_j parameter is important for jet physics because it is related to the jet-frame sidewise expansion speed and causal connection between the jet edges and its symmetry axis. Most importantly, the standard model of jet production requires that the jet be causally connected with its symmetry axis, implying that Gamma*theta_j < 1. When we apply our method to the MOJAVE flux density limited sample of radio loud objects, we find Gamma*theta_j = 0.2, implying that AGN jets are causally connected. We also find evidence that AGN jets viewed very close to the line of sight effectively have smaller intrinsic opening angles compared with jets viewed more off-axis, which is consistent with Doppler beaming and a fast inner spine/slow outer sheath velocity field. Notably, gamma-ray burst (GRB) jets have a typical Gamma*theta_j that is two orders of magnitude higher, suggesting that different physical mechanisms are at work in GRB jets compared to AGN jets. A useful application of our result is that a jet's beaming parameters can be derived. Assuming Gamma*theta_j is approximately constant in the AGN jet population, an individual jet's Doppler factor and Lorentz factor (and therefore also its viewing angle) can be determined using two observable quantities: apparent jet opening angle and the apparent speed of jet components.Comment: 9 pages, 4 figure
    • …
    corecore