5 research outputs found
NF-κB DNA-binding activity in embryos responding to a teratogen, cyclophosphamide
BACKGROUND: The Rel/NF-κB transcription factors have been shown to regulate apoptosis in different cell types, acting as inducers or blockers in a stimuli- and cell type-dependent fashion. One of the Rel/NF-κB subunits, RelA, has been shown to be crucial for normal embryonic development, in which it functions in the embryonic liver as a protector against TNFα-induced physiological apoptosis. This study assesses whether NF-κB may be involved in the embryo's response to teratogens. Fot this, we evaluated how NF-KappaB DNA binding activity in embryonic organs demonstraiting differential sensitivity to a reference teratogen, cyclophosphamide, correlates with dysmorphic events induced by the teratogen at the cellular level (excessive apoptosis) and at the organ level (structural anomalies). RESULTS: The embryonic brain and liver were used as target organs. We observed that the Cyclophosphamide-induced excessive apoptosis in the brain, followed by the formation of severe craniofacial structural anomalies, was accompanied by suppression of NF-κB DNA-binding activity as well as by a significant and lasting increase in the activity of caspases 3 and 8. However, in the liver, in which cyclophosphamide induced transient apoptosis was not followed by dysmorphogenesis, no suppression of NF-κB DNA-binding activity was registered and the level of active caspases 3 and 8 was significantly lower than in the brain. It has also been observed that both the brain and liver became much more sensitive to the CP-induced teratogenic insult if the embryos were exposed to a combined treatment with the teratogen and sodium salicylate that suppressed NF-κB DNA-binding activity in these organs. CONCLUSION: The results of this study demonstrate that suppression of NF-κB DNA-binding activity in embryos responding to the teratogenic insult may be associated with their decreased resistance to this insult. They also suggest that teratogens may suppress NF-κB DNA-binding activity in the embryonic tissues in an organ type- and dose-dependent fashion
Diabetes-Induced Fetal Growth Retardation is Associated with Suppression of NF-κB Activity in Embryos
BACKGROUND: Mechanisms underlying diabetes-induced fetal growth retardation remain largely undefined. Two events such as the persistent activation of apoptosis or suppression of cell proliferation in embryos might directly result in fetal growth retardation. Evidence implicating the transcription factor NF-κB in the regulation of the physiological and teratogen-induced apoptosis as well as cell proliferation suggests that it may be a component of mechanisms underlying this pathology. To address this issue, this study was designed to test: 1) whether diabetes-induced fetal growth retardation is preceded by the modulation of NF-κB activity in embryos at the late stage of organogenesis and 2) whether apoptosis is altered in these embryos. METHODS: The embryos and placentas of streptozotocin-induced diabetic mice collected on days 13 and 15 of pregnancy were used to evaluate the expression of NF-κB, IκBα and phosphorylated (p)-IκBα proteins by Western blot analysis and NF-κB DNA binding by an ELISA-based method. The detection of apoptotic cells was performed by the TUNEL assay and the expression of a proapoptotic protein Bax was evaluated by the Western blot. RESULTS: The embryos of diabetic mice were significantly growth retarded, whereas the placental weight did not differ in diabetic or control females. Levels of NF-κB and p-IκBα proteins as well as the amount of NF-κB DNA binding was lower in embryos of diabetic mice as compared to those in controls. However, neither excessive apoptosis nor an increased Bax expression was found in growth-retarded embryos and their placentas. CONCLUSION: The study herein revealed that diabetes-induced fetal growth retardation is associated with the suppression of NF-κB activity in embryos, which seems to be realized at the level of IκB degradation
Dabigatran etexilate for the treatment of acute venous thromboembolism in children (DIVERSITY): a randomised, controlled, open-label, phase 2b/3, non-inferiority trial
Dabigatran etexilate is a direct oral anticoagulant with potential to overcome the limitations of standard of care in children with venous thromboembolism. The aims of this clinical trial were to study the appropriateness of a paediatric dabigatran dosing algorithm, and the efficacy and safety of dabigatran dosed according to that algorithm versus standard of care in treating children with venous thromboembolism