8,490 research outputs found

    Non-stationary heat conduction in one-dimensional chains with conserved momentum

    Full text link
    The Letter addresses the relationship between hyperbolic equations of heat conduction and microscopic models of dielectrics. Effects of the non-stationary heat conduction are investigated in two one-dimensional models with conserved momentum: Fermi-Pasta-Ulam (FPU) chain and chain of rotators (CR). These models belong to different universality classes with respect to stationary heat conduction. Direct numeric simulations reveal in both models a crossover from oscillatory decay of short-wave perturbations of the temperature field to smooth diffusive decay of the long-wave perturbations. Such behavior is inconsistent with parabolic Fourier equation of the heat conduction. The crossover wavelength decreases with increase of average temperature in both models. For the FPU model the lowest order hyperbolic Cattaneo-Vernotte equation for the non-stationary heat conduction is not applicable, since no unique relaxation time can be determined.Comment: 4 pages, 5 figure

    Elliptic operators in odd subspaces

    Full text link
    An elliptic theory is constructed for operators acting in subspaces defined via odd pseudodifferential projections. Subspaces of this type arise as Calderon subspaces for first order elliptic differential operators on manifolds with boundary, or as spectral subspaces for self-adjoint elliptic differential operators of odd order. Index formulas are obtained for operators in odd subspaces on closed manifolds and for general boundary value problems. We prove that the eta-invariant of operators of odd order on even-dimesional manifolds is a dyadic rational number.Comment: 27 page

    Nonlinear Breathing-like Localized Modes in C60 Nanocrystals

    Get PDF
    We study the dynamics of nanocrystals composed of C60 fullerene molecules. We demonstrate that such structures can support long-lived strongly localized nonlinear oscillatory modes, which resemble discrete breathers in simple lattices. We reveal that at room temperatures the lifetime of such nonlinear localized modes may exceed tens of picoseconds; this suggests that C60 nanoclusters should demonstrate anomalously slow thermal relaxation when the temperature gradient decays in accord to a power law, thus violating the Cattaneo-Vernotte law of thermal conductivity.Comment: 6 pages, 6 figure

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.

    Lattice stretching bistability and dynamic heterogeneity

    Get PDF
    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and an harmonic second-neighbor coupling. Under an external stretching applied t o the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provide s a homogeneous bistable (degenerate) ground state, at least within a certain part of the chain. As a result, different conformational changes occur in the chain under the external forcing. The transition regions between these conformations are described as topological solitons. With a strong second-neighbor interaction, the solitons describe the transition between the bistable ground states. However, the key point of the model is the appearance of a heterogenous structure, when the second-neighbor coupling is sufficiently weak. In this case, a part of the chain has short bonds with a single-well potential, whereas the complementary part admits strongly stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-stretching diagram for DNA and alpha-helix protein. Finally, the soliton dynamics are studied in detail.Comment: Submitted to Phys. Rev. E, 13 figure

    System-adapted correlation energy density functionals from effective pair interactions

    Full text link
    We present and discuss some ideas concerning an ``average-pair-density functional theory'', in which the ground-state energy of a many-electron system is rewritten as a functional of the spherically and system-averaged pair density. These ideas are further clarified with simple physical examples. We then show that the proposed formalism can be combined with density functional theory to build system-adapted correlation energy functionals. A simple approximation for the unknown effective electron-electron interaction that enters in this combined approach is described, and results for the He series and for the uniform electron gas are briefly reviewed.Comment: to appear in Phil. Mag. as part of Conference proceedings for the "Electron Correlations and Materials Properties", Kos Greece, July 5-9, 200

    Long-range/short-range separation of the electron-electron interaction in density functional theory

    Full text link
    By splitting the Coulomb interaction into long-range and short-range components, we decompose the energy of a quantum electronic system into long-range and short-range contributions. We show that the long-range part of the energy can be efficiently calculated by traditional wave function methods, while the short-range part can be handled by a density functional. The analysis of this functional with respect to the range of the associated interaction reveals that, in the limit of a very short-range interaction, the short-range exchange-correlation energy can be expressed as a simple local functional of the on-top pair density and its first derivatives. This provides an explanation for the accuracy of the local density approximation (LDA) for the short-range functional. Moreover, this analysis leads also to new simple approximations for the short-range exchange and correlation energies improving the LDA.Comment: 18 pages, 14 figures, to be published in Phys. Rev.
    corecore