711 research outputs found

    Comparative analysis of alternative fuels in detonation combustion

    Get PDF
    Detonation combustion prominently exhibits high thermodynamic efficiency which leads to better performance. As compared to the conventionally used isobaric heat addition in a Brayton cycle combustor, detonation uses a novel isochoric Humphrey cycle which utilises shocks and detonation waves to provide pressure-rise combustion. Such unsteady combustion has already been explored in wave rotor, pulse detonation engine and rotating detonation engine configurations as alternative technologies for the next generation of the aerospace propulsion systems. However, in addition to the better performance that the detonation mode of combustion offers, it is crucial to observe the environmental concerns as well. Therefore, this paper presents a one-dimensional numerical analysis for alternative fuels: Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algae Biofuel, and Microalgae Biofuel under detonation combustion conditions. For simplicity, the analysis is modelled using an open tube geometry. The analysis employs the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model and takes into account species mole, mass fraction, and enthalpies-of-formation of the reactants. Initially, minimum conditions for the detonation of each fuel are determined. Pressure, temperature, and density ratios at each stage of the combustion tube for different types of fuel are then explored systematically. Finally, the influence of different initial conditions is numerically examined to make a comparison for these fuels

    Modelling of spray evaporation and penetration for alternative fuels

    Get PDF
    The focus of this work is on the modelling of evaporation and spray penetration for alternative fuels. The extension model approach is presented and validated for alternative fuels, namely, Kerosene (KE), Ethanol (ETH), Methanol (MTH), Microalgae biofuel (MA), Jatropha biofuel (JA), and Camelina biofuel (CA). The results for atomization and spray penetration are shown in a time variant condition. Comparisons have been made to visualize the transient behaviour of these fuels. The vapour pressure tendencies are revealed to have significant effects on the transient shape of the evaporation process. In a given time frame, ethanol fuel exhibits the highest evaporation rate and followed by methanol, other biofuels and kerosene. Ethanol also propagates the farthest distance and followed by methanol and kerosene. However, all biofuels have a shorter penetration length in the given time. These give penalty costs to biofuels emissions formation. The influences of initial conditions such as temperature and droplet velocity are also explored numerically. High initial temperature and velocity could accelerate evaporation rate. However, high initial temperature has resulted in low penetration length while high initial velocity produces contrasting results

    Comparative study of alternative biofuels on aircraft engine performance

    Get PDF
    Aviation industries are vulnerable to the energy crisis and simultaneously posed environmental concerns. Proposed engine technology advancements could reduce the environmental impact and energy consumption. Substituting the source of jet fuel from fossil-based fuel to biomass-based fuel will help reduce emissions and minimize the energy crisis. The present paper addresses the analysis of aircraft engine performance in terms of thrust, fuel flow and specific fuel consumption at different mixing ratio percentages (20%, 40%, 50%, 60% and 80%) of alternative biofuel blends already used in flight test (Algae biofuel, Camelina biofuel and Jatropha biofuel) at different flight conditions. In-house computer software codes, PYTHIA and TURBOMATCH, were used for the analysis and modeling of a three-shaft high-bypass-ratio engine which is similar to RB211-524. The engine model was verified and validated with open literature found in the test program of bio-synthetic paraffinic kerosene in commercial aircraft. The results indicated that lower heating value had a significant influence on thrust, fuel flow and specific fuel consumption at every flight condition and at all mixing ratio percentages. Wide lower heating value differences between two fuels give a large variation on the engine performances. Blended Kerosene–Jatropha biofuel and Kerosene–Camelina biofuel showed an improvement on gross thrust, net thrust, reduction of fuel flow and specific fuel consumption at every mixing ratio percentage and at different flight conditions. Moreover, the pure alternative of Jatropha biofuel and Camelina biofuel gave much better engine performances. This was not the case for the Kerosene–Algae blended biofuel. This study is a crucial step in understanding the influence of different blended alternative biofuels on the performance of aircraft engines

    Enhanced Accessibility for People with Disabilities Living in Urban Areas

    Get PDF
    [Excerpt] People with disabilities constitute a significant proportion of the poor in developing countries. If internationally agreed targets on reducing poverty are to be reached, it is critical that specific measures be taken to reduce the societal discrimination and isolation that people with disabilities continue to face. Transport is an important enabler of strategies to fight poverty through enhancing access to education, employment, and social services. This project aims to further the understanding of the mobility and access issues experienced by people with disabilities in developing countries, and to identify specific steps that can be taken to start addressing problems. A major objective of the project is to compile a compendium of guidelines that can be used by government authorities, advocacy groups, and donor/loan agencies to improve the access of people with disabilities to transport and other services in urban areas

    Embedded large eddy simulation of transitional flow over NACA0012 aerofoil

    Get PDF
    An accurate computation of near-field unsteady turbulent flow around aerofoil is of outstanding importance for aerofoil trailing edge noise source prediction, which is a representative of main contributor to airframe noise and fan noise in modern commercial aircraft. In this study, an embedded large eddy simulation (ELES) is fully implemented in a separation-induced transitional flow over NACA0012 aerofoil at a moderate Reynolds number. It aims to evaluate the performance of the ELES method in aerodynamics simulation for wall-bounded aerospace flow in terms of accuracy, computational cost and complexity of implementation. Some good practice is presented including the special treatments at RANS-LES interface to provide more realistic turbulence generation in LES inflow. A comprehensive validation of the ELES results is performed by comparing with the experimental data and the wall-resolved large eddy simulation results. It is concluded that the ELES method could provide sufficient accuracy in the transitional flow simulations around aerofoil. It is proved to be a promising alternative to the pure LES for industrial flow applications involving wall boundary layer due to its significant computational efficiency

    Adaptive laboratory evolution of cupriavidus necator H16 for carbon co-utilization with glycerol

    Get PDF
    Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate–glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Heterozygosity-fitness correlations in a wild mammal population: accounting for parental and environmental effects

    Get PDF
    HFCs (heterozygosity–fitness correlations) measure the direct relationship between an individual's genetic diversity and fitness. The effects of parental heterozygosity and the environment on HFCs are currently under-researched. We investigated these in a high-density U.K. population of European badgers (Meles meles), using a multimodel capture–mark–recapture framework and 35 microsatellite loci. We detected interannual variation in first-year, but not adult, survival probability. Adult females had higher annual survival probabilities than adult males. Cubs with more heterozygous fathers had higher first-year survival, but only in wetter summers; there was no relationship with individual or maternal heterozygosity. Moist soil conditions enhance badger food supply (earthworms), improving survival. In dryer years, higher indiscriminate mortality rates appear to mask differential heterozygosity-related survival effects. This paternal interaction was significant in the most supported model; however, the model-averaged estimate had a relative importance of 0.50 and overlapped zero slightly. First-year survival probabilities were not correlated with the inbreeding coefficient (f); however, small sample sizes limited the power to detect inbreeding depression. Correlations between individual heterozygosity and inbreeding were weak, in line with published meta-analyses showing that HFCs tend to be weak. We found support for general rather than local heterozygosity effects on first-year survival probability, and g2 indicated that our markers had power to detect inbreeding. We emphasize the importance of assessing how environmental stressors can influence the magnitude and direction of HFCs and of considering how parental genetic diversity can affect fitness-related traits, which could play an important role in the evolution of mate choice

    Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen

    Get PDF
    Wheat is the second biggest staple crop worldwide and is mainly consumed in the form of baked goods, requiring a specific flour quality. Grain protein concentration (GPC) is an underpinning parameter for baking quality and therefore strongly influences the value of wheat. It is a common strategy to increase GPC by combining high protein varieties with the application of a late dose of nitrogen. However, the late use of N fertilisers can cause environmental problems, such as nitrate leaching and gaseous losses. Furthermore, recent studies show, that there is only a weak relationship between GPC and bread volume. The aim of this study was to re-evaluate the merits of a late N application by investigating the effects of a late foliar N application, not only on GPC, but also on the gluten protein composition and on bread volume. In this study, an increasing GPC did not necessarily lead to improved baking quality. Baking performance rather depended on the grain protein composition. Only at a low N fertiliser level (100 kg N ha-1), the foliar N application decreased the HMW-GS/LMW-GS ratio and increased the gliadin/HMW-GS ratio, which led to an improved bread volume. These results imply that a late foliar N application can be used to effectively improve baking quality when the total N uptake was low due to low fertilisation or unfavourable weather conditions. The results also show that quality cannot be evaluated by measuring GPC alone but also needs information of storage protein composition as well as bread volume
    corecore