676 research outputs found
Lotka--Volterra Type Equations and their Explicit Integration
In the present note we give an explicit integration of some
two--dimensionalised Lotka--Volterra type equations associated with simple Lie
algebras, other than the familiar case, possessing a representation
without branching. This allows us, in particular, to treat the first
fundamental representations of , , , and on the same
footing.Comment: 3 pages LATEX fil
Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems
We associate to an arbitrary -gradation of the Lie algebra of a
Lie group a system of Riccati-type first order differential equations. The
particular cases under consideration are the ordinary Riccati and the matrix
Riccati equations. The multidimensional extension of these equations is given.
The generalisation of the associated Redheffer--Reid differential systems
appears in a natural way. The connection between the Toda systems and the
Riccati-type equations in lower and higher dimensions is established. Within
this context the integrability problem for those equations is studied. As an
illustration, some examples of the integrable multidimensional Riccati-type
equations related to the maximally nonabelian Toda systems are given.Comment: LaTeX2e, 18 page
Continuous approximation of binomial lattices
A systematic analysis of a continuous version of a binomial lattice,
containing a real parameter and covering the Toda field equation as
, is carried out in the framework of group theory. The
symmetry algebra of the equation is derived. Reductions by one-dimensional and
two-dimensional subalgebras of the symmetry algebra and their corresponding
subgroups, yield notable field equations in lower dimensions whose solutions
allow to find exact solutions to the original equation. Some reduced equations
turn out to be related to potentials of physical interest, such as the
Fermi-Pasta-Ulam and the Killingbeck potentials, and others. An instanton-like
approximate solution is also obtained which reproduces the Eguchi-Hanson
instanton configuration for . Furthermore, the equation under
consideration is extended to --dimensions. A spherically symmetric form
of this equation, studied by means of the symmetry approach, provides
conformally invariant classes of field equations comprising remarkable special
cases. One of these enables us to establish a connection with the
Euclidean Yang-Mills equations, another appears in the context of Differential
Geometry in relation to the socalled Yamabe problem. All the properties of the
reduced equations are shared by the spherically symmetric generalized field
equation.Comment: 30 pages, LaTeX, no figures. Submitted to Annals of Physic
Multidimensional Toda type systems
On the base of Lie algebraic and differential geometry methods, a wide class
of multidimensional nonlinear systems is obtained, and the integration scheme
for such equations is proposed.Comment: 29 pages, LaTeX fil
- …