2,024 research outputs found
Transforming carbon nanotubes by silylation: An ab initio study
We use ab initio density functional calculations to study the chemical
functionalization of single-wall carbon nanotubes and graphene monolayers by
silyl (SiH3) radicals and hydrogen. We find that silyl radicals form strong
covalent bonds with graphene and nanotube walls, causing local structural
relaxations that enhance the sp3 character of these graphitic nanostructures.
Silylation transforms all carbon nanotubes into semiconductors, independent of
their chirality. Calculated vibrational spectra suggest that specific frequency
shifts can be used as a signature of successful silylation.Comment: 4 pages, 3 figure
On the Jacobian of minimal graphs in R^4
We provide a characterization for complex analytic curves among
two-dimensional minimal graphs in via the Jacobia
Interplay between structure and magnetism in nanowires
We investigate the equilibrium geometry and electronic structure of
MoSI nanowires using ab initio Density Functional
calculations. The skeleton of these unusually stable nanowires consists of
rigid, functionalized Mo octahedra, connected by flexible, bi-stable sulphur
bridges. This structural flexibility translates into a capability to stretch up
to approximate 20% at almost no energy cost. The nanowires change from
conductors to narrow-gap magnetic semiconductors in one of their structural
isomers.Comment: 4 pages with PRL standards and 3 figure
- …
