2,024 research outputs found

    Transforming carbon nanotubes by silylation: An ab initio study

    Full text link
    We use ab initio density functional calculations to study the chemical functionalization of single-wall carbon nanotubes and graphene monolayers by silyl (SiH3) radicals and hydrogen. We find that silyl radicals form strong covalent bonds with graphene and nanotube walls, causing local structural relaxations that enhance the sp3 character of these graphitic nanostructures. Silylation transforms all carbon nanotubes into semiconductors, independent of their chirality. Calculated vibrational spectra suggest that specific frequency shifts can be used as a signature of successful silylation.Comment: 4 pages, 3 figure

    On the Jacobian of minimal graphs in R^4

    Full text link
    We provide a characterization for complex analytic curves among two-dimensional minimal graphs in R4\mathbb{R}^{4} via the Jacobia

    Interplay between structure and magnetism in Mo12S9I9Mo_{12} S_9 I_9 nanowires

    Full text link
    We investigate the equilibrium geometry and electronic structure of Mo12_{12}S9_{9}I9_{9} nanowires using ab initio Density Functional calculations. The skeleton of these unusually stable nanowires consists of rigid, functionalized Mo octahedra, connected by flexible, bi-stable sulphur bridges. This structural flexibility translates into a capability to stretch up to approximate 20% at almost no energy cost. The nanowires change from conductors to narrow-gap magnetic semiconductors in one of their structural isomers.Comment: 4 pages with PRL standards and 3 figure
    corecore