5,645 research outputs found
Ultrastable CO2 Laser Trapping of Lithium Fermions
We demonstrate an ultrastable CO2 laser trap that provides tight confinement
of neutral atoms with negligible optical scattering and minimal laser-noise-
induced heating. Using this method, fermionic 6Li atoms are stored in a 0.4 mK
deep well with a 1/e trap lifetime of 300 sec, consistent with a background
pressure of 10^(-11) Torr. To our knowledge, this is the longest storage time
ever achieved with an all-optical trap, comparable to the best reported
magnetic traps.Comment: 4 pages using REVTeX, 1 eps figur
Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag
We study the electrophoretic separation of polyelectrolytes of varying
lengths by means of end-labeled free-solution electrophoresis (ELFSE). A
coarse-grained molecular dynamics simulation model, using full electrostatic
interactions and a mesoscopic Lattice Boltzmann fluid to account for
hydrodynamic interactions, is used to characterize the drag coefficients of
different label types: linear and branched polymeric labels, as well as
transiently bound micelles.
It is specifically shown that the label's drag coefficient is determined by
its hydrodynamic size, and that the drag per label monomer is largest for
linear labels. However, the addition of side chains to a linear label offers
the possibility to increase the hydrodynamic size, and therefore the label
efficiency, without having to increase the linear length of the label, thereby
simplifying synthesis. The third class of labels investigated, transiently
bound micelles, seems very promising for the usage in ELFSE, as they provide a
significant higher hydrodynamic drag than the other label types.
The results are compared to theoretical predictions, and we investigate how
the efficiency of the ELFSE method can be improved by using smartly designed
drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule
Fast shower simulation in the ATLAS calorimeter
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
Mass measurements near the -process path using the Canadian Penning Trap mass spectrometer
The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an
average precision of using the Canadian Penning Trap mass
spectrometer at Argonne National Laboratory. The measurements, of fission
fragments from a Cf spontaneous fission source in a helium gas catcher,
approach the predicted path of the astrophysical process. Where overlap
exists, this data set is largely consistent with previous measurements from
Penning traps, storage rings, and reaction energetics, but large systematic
deviations are apparent in -endpoint measurements. Differences in mass
excess from the 2003 Atomic Mass Evaluation of up to 400 keV are seen, as well
as systematic disagreement with various mass models.Comment: 15 pages, 16 figures. v2 updated, published in Physical Review
Quantum computation with trapped polar molecules
We propose a novel physical realization of a quantum computer. The qubits are
electric dipole moments of ultracold diatomic molecules, oriented along or
against an external electric field. Individual molecules are held in a 1-D trap
array, with an electric field gradient allowing spectroscopic addressing of
each site. Bits are coupled via the electric dipole-dipole interaction. Using
technologies similar to those already demonstrated, this design can plausibly
lead to a quantum computer with qubits, which can perform CNOT gates in the anticipated decoherence time of s.Comment: 4 pages, RevTeX 4, 2 figures. Edited for length and converted to
RevTeX, but no substantial changes from earlier pdf versio
A white-light trap for Bose-Einstein condensates
We propose a novel method for trapping Bose-condensed atoms using a
white-light interference fringe. Confinement frequencies of tens of kHz can be
achieved in conjunction with trap depths of only a few micro-K. We estimate
that lifetimes on the order of 10 s can be achieved for small numbers of atoms.
The tight confinement and shallow depth permit tunneling processes to be used
for studying interaction effects and for applications in quantum information.Comment: 10 pages with 3 figure
Contact Interactions and Resonance-Like Physics at Present and Future Colliders from Unparticles
High scale conformal physics can lead to unusual unparticle stuff at our low
energies. In this paper we discuss how the exchange of unparticles between
Standard Model fields can lead to new contact interaction physics as well as a
pseudoresonance-like structure, an unresonance, that might be observable at the
Tevatron or LHC in, e.g., the Drell-Yan channel. The specific signatures of
this scenario are quite unique and can be used to easily identify this new
physics given sufficient integrated luminosity.Comment: 20 pages, 10 figs; minor text changes, ref added; typos correcte
Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams
We theoretically investigate the use of red-detuned Laguerre-Gaussian (LG)
laser beams of varying azimuthal mode index for producing toroidal optical
dipole traps in two-dimensional atomic Bose-Einstein condensates. Higher-order
LG beams provide deeper potential wells and tighter confinement for a fixed
toroid radius and laser power. Numerical simulations of the loading of the
toroidal trap from a variety of initial conditions is also given.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
- …