101 research outputs found
The Complexity of All-switches Strategy Improvement
Strategy improvement is a widely-used and well-studied class of algorithms
for solving graph-based infinite games. These algorithms are parameterized by a
switching rule, and one of the most natural rules is "all switches" which
switches as many edges as possible in each iteration. Continuing a recent line
of work, we study all-switches strategy improvement from the perspective of
computational complexity. We consider two natural decision problems, both of
which have as input a game , a starting strategy , and an edge . The
problems are: 1.) The edge switch problem, namely, is the edge ever
switched by all-switches strategy improvement when it is started from on
game ? 2.) The optimal strategy problem, namely, is the edge used in the
final strategy that is found by strategy improvement when it is started from
on game ? We show -completeness of the edge switch
problem and optimal strategy problem for the following settings: Parity games
with the discrete strategy improvement algorithm of V\"oge and Jurdzi\'nski;
mean-payoff games with the gain-bias algorithm [14,37]; and discounted-payoff
games and simple stochastic games with their standard strategy improvement
algorithms. We also show -completeness of an analogous problem
to edge switch for the bottom-antipodal algorithm for finding the sink of an
Acyclic Unique Sink Orientation on a cube
Finding Nash equilibria of bimatrix games
This thesis concerns the computational problem of finding one Nash equilibrium of a bimatrix game, a two-player game in strategic form. Bimatrix games are among the most basic models in non-cooperative game theory, and finding a Nash equilibrium is important for their analysis.
The Lemke—Howson algorithm is the classical method for finding one Nash equilib-rium of a bimatrix game. In this thesis, we present a class of square bimatrix games for which this algorithm takes, even in the best case, an exponential number of steps in the dimension d of the game. Using polytope theory, the games are constructed using pairs of dual cyclic polytopes with 2d suitably labelled facets in d-space. The construc-tion is extended to two classes of non-square games where, in addition to exponentially long Lemke—Howson computations, finding an equilibrium by support enumeration takes exponential time on average.
The Lemke—Howson algorithm, which is a complementary pivoting algorithm, finds at least one solution to the linear complementarity problem (LCP) derived from a bimatrix game. A closely related complementary pivoting algorithm by Lemke solves more general LCPs. A unified view of these two algorithms is presented, for the first time, as far as we know. Furthermore, we present an extension of the standard version of Lemke's algorithm that allows one more freedom than before when starting the algorithm
Computing Approximate Nash Equilibria in Polymatrix Games
In an -Nash equilibrium, a player can gain at most by
unilaterally changing his behaviour. For two-player (bimatrix) games with
payoffs in , the best-known achievable in polynomial time is
0.3393. In general, for -player games an -Nash equilibrium can be
computed in polynomial time for an that is an increasing function of
but does not depend on the number of strategies of the players. For
three-player and four-player games the corresponding values of are
0.6022 and 0.7153, respectively. Polymatrix games are a restriction of general
-player games where a player's payoff is the sum of payoffs from a number of
bimatrix games. There exists a very small but constant such that
computing an -Nash equilibrium of a polymatrix game is \PPAD-hard.
Our main result is that a -Nash equilibrium of an -player
polymatrix game can be computed in time polynomial in the input size and
. Inspired by the algorithm of Tsaknakis and Spirakis, our
algorithm uses gradient descent on the maximum regret of the players. We also
show that this algorithm can be applied to efficiently find a
-Nash equilibrium in a two-player Bayesian game
The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions
We show that the widely used homotopy method for solving fixpoint problems,
as well as the Harsanyi-Selten equilibrium selection process for games, are
PSPACE-complete to implement. Extending our result for the Harsanyi-Selten
process, we show that several other homotopy-based algorithms for finding
equilibria of games are also PSPACE-complete to implement. A further
application of our techniques yields the result that it is PSPACE-complete to
compute any of the equilibria that could be found via the classical
Lemke-Howson algorithm, a complexity-theoretic strengthening of the result in
[Savani and von Stengel]. These results show that our techniques can be widely
applied and suggest that the PSPACE-completeness of implementing homotopy
methods is a general principle.Comment: 23 pages, 1 figure; to appear in FOCS 2011 conferenc
- …