4 research outputs found

    Compatibility of DAMA/LIBRA dark matter detection with other searches

    Full text link
    The DAMA/NaI and DAMA/LIBRA annual modulation data, which may be interpreted as a signal for the existence of weakly interacting dark matter (WIMPs) in our galactic halo, are examined in light of null results from other experiments. We use the energy spectrum of the combined DAMA modulation data given in 36 bins, and include the effect of channeling. Several statistical tools are implemented in our study: likelihood ratio with a global fit and with raster scans in the WIMP mass and goodness-of-fit (g.o.f.). These approaches allow us to differentiate between the preferred (global best fit) and allowed (g.o.f.) parameter regions. It is hard to find WIMP masses and couplings consistent with all existing data sets. For spin-independent (SI) interactions, the best fit DAMA regions are ruled out to the 3σ\sigma C.L., even with channeling taken into account. However, for WIMP masses of ~8 GeV some parameters outside these regions still yield a moderately reasonable fit to the DAMA data and are compatible with all 90% C.L. upper limits from negative searches, when channeling is included. For spin-dependent (SD) interactions with proton-only couplings, a range of masses below 10 GeV is compatible with DAMA and other experiments, with and without channeling, when SuperK indirect detection constraints are included; without the SuperK constraints, masses as high as ~20 GeV are compatible. For SD neutron-only couplings we find no parameters compatible with all the experiments. Mixed SD couplings are examined: e.g. ~8 GeV mass WIMPs with a_n = +/- a_p are found to be consistent with all experiments. In short, there are surviving regions at low mass for both SI and SD interactions; if indirect detection limits are relaxed, some SD proton-only couplings at high masses also survive.Comment: 45 pages, 23 figures. v2: Added references and minor revisions. v3: improvements to some null experiment analyses and DAMA g.o.f. statistical constraints; added DAMA total event rate constrain

    Compatibility of DAMA/LIBRA dark matter detection with other searches in light of new Galactic rotation velocity measurements

    Full text link
    The DAMA/NaI and DAMA/LIBRA annual modulation data, which may be interpreted as a signal for the existence of weakly interacting dark matter (WIMPs) in our galactic halo, are re-examined in light of new measurements of the local velocity relative to the galactic halo. In the vicinity of the Sun, the velocity of the Galactic disk has been estimated to be 250 km/s rather than 220 km/s. Our analysis is performed both with and without the channeling effect included. The best fit regions to the DAMA data are shown to move to slightly lower WIMP masses. Compatibility of DAMA data with null results from other experiments (CDMS, XENON10, and CRESST I) is investigated given these new velocities. A small region of spin-independent (elastic) scattering for 7-8 GeV WIMP masses remains at 3σ\sigma. Spin-dependent scattering off of protons is viable for 5-15 GeV WIMP masses for direct detection experiments (but has been argued by others to be further constrained by Super-Kamiokande due to annihilation in the Sun).Comment: 18 pages, 6 figures. v2: added reference, minor changes to match JCAP versio

    One needs positive signatures for detection of Dark Matter

    Full text link
    One believes there is huge amount of Dark Matter particles in our Galaxy which manifest themselves only gravitationally. There is a big challenge to prove their existence in a laboratory experiment. To this end it is not sufficient to fight only for the best exclusion curve, one has to see an annual recoil spectrum modulation --- the only available positive direct dark matter detection signature. A necessity to measure the recoil spectra is stressed.Comment: 16 pages, 1 figure. arXiv admin note: substantial Appendix text overlap with arXiv:0806.3917; missed acknowledge is added onl

    WIMP dark matter, Higgs exchange and DAMA

    Full text link
    In the WIMP scenario, there is a one-to-one relation between the dark matter (DM) relic density and spin independent direct detection rate if both the annihilation of DM and its elastic scattering on nuclei go dominantly through Higgs exchange. In particular, for DM masses much smaller than the Higgs boson mass, the ratio of the relevant cross sections depends only on the DM mass. Assuming DM mass and direct detection rate within the ranges allowed by the recent DAMA collaboration results -taking account of the channelling effect on energy threshold and the null results of the other direct detection experiments- gives a definite range for the relic density. For scalar DM models, like the Higgs portal models or the inert doublet model, the relic density range turns out to be in agreement with WMAP. This scenario implies that the Higgs boson has a large branching ratio to pairs of DM particles, a prediction which might challenge its search at the LHC.Comment: 5 pages, 5 figures. Matches the published version. One figure modified. Conclusions unchange
    corecore