165 research outputs found

    Tumor microenvironment in NSCLC suppresses NK cells function

    Get PDF
    NK cells, which contribute to tumor immunosurveillance, are present in the microenvironment of Non-Small-Cell Lung Carcinoma. However, they display strongly altered phenotype with decreased expression of NKp30, NKp80, DNAM-1, CD16 and ILT2, and impaired cytotoxic functions. The possible mechanisms leading to these defects are discussed

    The European Academy of Tumor Immunology: Bridging fields, continents and generations

    Get PDF
    The European Academy of Tumor Immunology (EATI, official website: http://eati.landesbioscience.com/index.html) has been founded in 2011 with the idea of creating a novel organization that responds to the need of structuring the European research space in this expanding, clinically ever more important area of research. Rapidly, this initiative, which regroups (part of) the elite of tumor immunologists, has been joined by 110 scientists, who accepted to join EATI as founding members. Obviously, EATI will not enter in competition with existing prestigious organizations, be they supranational (such as the Cancer Research Institute, CRI; the European Society for Cancer Immunology and Immunotherapy, ESCII; and the Society for the Immunotherapy of Cancer, SITC), or national [such as the Cancer Immunology Working Group, CIMM, of the American Association for Cancer Reserch; the (German) Association for Cancer Immunotherapy, CIMT; the (US) Cancer Immunotherapy Consortium, CIC; the (US) Cancer Vaccine Consortium, CVC; and the Italian Network for Cancer Biotherapy, NIBIT]. The choice of cooperation (rather than competition) with these organizations is clearly documented by the fact that many prominent members of CIMM, CIC, CIMT, CRI, CVC, ESCII, NIBIT and SITC are also EATI Academicians

    Trial watch: Chemotherapy with immunogenic cell death inducers

    Get PDF
    The long-established notion that apoptosis would be immunologically silent, and hence it would go unnoticed by the immune system, if not tolerogenic, and hence it would actively suppress immune responses, has recently been revisited. In some instances, indeed, cancer cells undergo apoptosis while emitting a spatiotemporally-defined combination of signals that renders them capable of eliciting a long-term protective antitumor immune response. Importantly, only a few anticancer agents can stimulate such an immunogenic cell death. These include cyclophosphamide, doxorubicin and oxaliplatin, which are currently approved by FDA for the treatment of multiple hematologic and solid malignancies, as well as mitoxantrone, which is being used in cancer therapy and against multiple sclerosis. In this Trial Watch, we will review and discuss the progress of recent (initiated after January 2008) clinical trials evaluating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone

    Murine Models of B-Cell Lymphomas: Promising Tools for Designing Cancer Therapies

    Get PDF
    Human B-cell lymphomas, the fourth most common hematologic malignancy, are currently the subject of extensive research. The limited accessibility of biopsies, the heterogeneity among patients, and the subtypes of lymphomas have necessitated the development of animal models to decipher immune escape mechanisms and design new therapies. Here, we summarize the cell lines and murine models used to study lymphomagenesis, the lymphoma microenvironment, and the efficacy of new therapies. These data allow us to understand the role of the immune system in the fight against tumors. Exploring the advantages and limitations of immunocompetent versus immunodeficient models improves our understanding of the molecular and cellular mechanisms of tumor genesis and development as well as the fundamental processes governing the interaction of tumors and their host tissues. We posit that these basic preclinical investigations will open up new and promising approaches to designing better therapies

    Metastatic Melanomas Express Inhibitory Low Affinity Fc Gamma Receptor and Escape Humoral Immunity

    Get PDF
    Our research, inspired by the pioneering works of Isaac Witz in the 1980s, established that 40% of human metastatic melanomas express ectopically inhibitory Fc gamma receptors (FcγRIIB), while they are detected on less than 5% of primary cutaneous melanoma and not on melanocytes. We demonstrated that these tumoral FcγRIIB act as decoy receptors that bind the Fc portion of antimelanoma IgG, which may prevent Fc recognition by the effector cells of the immune system and allow the metastatic melanoma to escape the humoral/natural immune response. The FcγRIIB is able to inhibit the ADCC (antibody dependent cell cytotoxicity) in vitro. Interestingly, the percentage of melanoma expressing the FcγRIIB is high (70%) in organs like the liver, which is rich in patrolling NK (natural killer) cells that exercise their antitumoral activity by ADCC. We found that this tumoral FcγRIIB is fully functional and that its inhibitory potential can be triggered depending on the specificity of the anti-tumor antibody with which it interacts. Together these observations elucidate how metastatic melanomas interact with and potentially evade humoral immunity and provide direction for the improvement of anti-melanoma monoclonal antibody therapy

    Trial Watch: Adoptive cell transfer immunotherapy

    Get PDF
    During the last two decades, several approaches for the activation of the immune system against cancer have been developed. These include rather unselective maneuvers such as the systemic administration of immunostimulatory agents (e.g., interleukin-2) as well as targeted interventions, encompassing highly specific monoclonal antibodies, vaccines and cell-based therapies. Among the latter, adoptive cell transfer (ACT) involves the selection of autologous lymphocytes with antitumor activity, their expansion/activation ex vivo, and their reinfusion into the patient, often in the context of lymphodepleting regimens (to minimize endogenous immunosuppression). Such autologous cells can be isolated from tumor-infiltrating lymphocytes or generated by manipulating circulating lymphocytes for the expression of tumor-specific T-cell receptors. In addition, autologous lymphocytes can be genetically engineered to prolong their in vivo persistence, to boost antitumor responses and/or to minimize side effects. ACT has recently been shown to be associated with a consistent rate of durable regressions in melanoma and renal cell carcinoma patients and holds great promises in several other oncological settings. In this Trial Watch, we will briefly review the scientific rationale behind ACT and discuss the progress of recent clinical trials evaluating the safety and effectiveness of adoptive cell transfer as an anticancer therapy

    Unraveling the complex interplay between anti-tumor immune response and autoimmunity mediated by B cells and autoantibodies in the era of anti-checkpoint monoclonal antibody therapies

    Get PDF
    The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship

    Th17 Cells Are Involved in the Local Control of Tumor Progression in Primary Intraocular Lymphoma

    Get PDF
    BACKGROUND: Th17 cells play an important role in the pathogenesis of many autoimmune diseases, but despite some reports of their antitumor properties, too little is known about their presence and role in cancers. Specifically, knowledge is sparse about the relation of Th17 to lymphoma microenvironments and, more particularly, to the microenvironment of primary intraocular B-cell lymphoma (PIOL), an aggressive lymphoma with a poor prognosis. METHODS AND PRINCIPAL FINDINGS: In this work, we investigated the presence of Th17 cells and their related cytokines in a syngeneic model of PIOL, a subtype of non-Hodgkin lymphoma. The very small number of lymphocytes trafficking in normal eyes, which represent a low background as compared to tumor-bearing eyes, allows us to develop the present model to characterize the different lymphocyte subsets present when a tumor is developing. IL-21 mRNA was expressed concomitantly with IL-17 mRNA in tumor-bearing eyes and intracellular expression of IL-17A and IL-21 in infiltrating CD4(+) T lymphocytes. Interestingly, IL-17A production by T cells was negatively correlated with tumor burden. We also showed that IL-21 but not IL-17 inhibits tumor cell proliferation in vitro. CONCLUSIONS: These data demonstrate that IL-17A and IL-21-producing CD4(+) T cells, referred as Th17 cells, infiltrate this tumor locally and suggest that Th17-related cytokines may counteract tumor progression via IL-21 production. Thus, Th17 cells or their related cytokines could be considered to be a new therapeutic approach for non-Hodgkin B-cell lymphomas, particularly those with an ocular localization
    corecore