4 research outputs found

    The Relationship between F2-Isoprostanes Plasma Levels and Depression Symptoms in Healthy Older Adults

    No full text
    The increasing proportion of older citizens in our society reflects a need to better understand age-related biological underpinnings of mood, as depression in older age may be under-diagnosed. Pre-clinical and human studies evidence a relationship between oxidative stress (OS) biomarkers in depression symptoms, and an influence of biological factors such as Body Mass Index (BMI), but focus has been clinical or younger samples, and less is known about patterns in healthy older adults. We investigated these associations with data derived from the Australian Research Council Longevity Study (ARCLI; ANZCTR12611000487910), in 568 healthy adults aged 60–75 years using F2-Isoprostanes plasma levels, and controlling for demographic factors, in assessing mood via the Beck Depression Inventory-II, Chalder Fatigue Scale, and General Health Questionnaire 12. Elevated F2-Isoprostanes contributed to depressed mood on the BDI-II and reduced general health on the GHQ-12. BMI was positively associated with Chalder Fatigue scores, yet better ratings on the GHQ-12. Females had significantly higher F2-Isoprostanes than males. The results suggest that in otherwise healthy older adults, mood and mental health are reduced with increases in oxidative stress markers, exhibiting similar patterns observed in clinical groups. Sex as a factor should be considered when assessing OS levels in systemic pathologies. BMI as a modifiable risk factor for maintenance of mental health, and OS modification through nutrient supplementation, are discussed. The findings contribute to understanding oxidative stress marker patterns in healthy older adults and their potential role in mood symptoms and mental health

    The Relationship between Gut Microbiome and Cognition in Older Australians

    No full text
    Ageing is associated with changes in biological processes, including reductions in cognitive functions and gut microbiome diversity. However, not much is known about the relationship between cognition and the microbiome with increasing age. Therefore, we examined the relationship between the gut microbiome and cognition in 69 healthy participants aged 60–75 years. The gut microbiome was analysed with the 16S rRNA sequencing method. The cognitive assessment included the Cognitive Drug Research computerised assessment battery, which produced five cognitive factors corresponding to ‘Quality of Episodic Secondary Memory’, ‘Quality of Working Memory’, ‘Continuity of Attention, ‘Speed of Memory’ and ‘Power of Concentration’. Multiple linear regression showed that the bacterial family Carnobacteriaceae explained 9% of the variance in predicting Quality of Episodic Secondary Memory. Alcaligenaceae and Clostridiaceae explained 15% of the variance in predicting Quality of Working Memory; Bacteroidaceae, Barnesiellaceae, Rikenellaceae and Gemellaceae explained 11% of the variance in Power of Concentration. The present study provides specific evidence of a relationship between specific families of bacteria and different domains of cognition

    The Australian Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910) addendum: neuroimaging and gut microbiota protocol

    No full text
    Abstract Background The Australian Research Council Longevity Intervention (ARCLI) was designed to investigate the effects of two active supplements, Pycnogenol and Bacopa monnieri (CDRI08) on cognitive performance in a cohort of elderly participants. An additional antioxidant supplement has been included into the trial. A neuroimaging component has also been added to the ARCLI study to investigate the neurochemical biomarkers of oxidative stress in vivo, as well as structural and functional changes associated with ageing and oxidative stress. Faecal biomarkers of gut microflora will also be analysed to investigate if gut microbiota are associated with domains of cognition (e.g., attention, processing speed, memory), mood or other ARCLI outcome variables. The aim of this paper is to update the published methods of the ARCLI clinical trial before it is completed, and data analysis commences. Methods ARCLI is a randomised, placebo controlled, double-blind, now 4-arm clinical trial including neuroimaging and gut microflora sub-studies. Along with the demographic, haematological, mood, cardiovascular and cognitive assessments described in the initial protocol, 80 eligible participants from the overall study pool of ~ 400 will be recruited into the neuroimaging study and undergo scans at baseline, 3 months and 12 months. Proton magnetic resonance spectroscopy, resting state functional connectivity and arterial spin labelled perfusion sequences are neuroimaging techniques included for each MRI visit in the study. Similarly, approximately 300 participants from the main study pool will be recruited to provide faecal samples at baseline, 3 months and 12 months so that the gut microbiome can be studied. Discussion ARCLI is 12-month intervention study, currently underway with a group of older adults, investigating a range of outcomes and their association with ageing. The additional measurements in the ARCLI trial will further the understanding of the underlying mechanisms associated with healthy ageing and may provide insights into novel preventative therapeutic strategies for maintaining cognitive and brain health into old age. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000487970
    corecore