1,463 research outputs found
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Models of Star-Planet Magnetic Interaction
Magnetic interactions between a planet and its environment are known to lead
to phenomena such as aurorae and shocks in the solar system. The large number
of close-in exoplanets that were discovered triggered a renewed interest in
magnetic interactions in star-planet systems. Multiple other magnetic effects
were then unveiled, such as planet inflation or heating, planet migration,
planetary material escape, and even modification of the host star properties.
We review here the recent efforts in modelling and understanding magnetic
interactions between stars and planets in the context of compact systems. We
first provide simple estimates of the effects of magnetic interactions and then
detail analytical and numerical models for different representative scenarii.
We finally lay out a series of future developments that are needed today to
better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of
Exoplanet
Phonon and Elastic Instabilities in MoC and MoN
We present several results related to the instability of MoC and MoN in the
B1 (sodium chloride) structure. These compounds were proposed as potential
superconductors with moderately high transition temperatures. We show that the
elastic instability in B1-structure MoN, demonstrated several years ago,
persists at elevated pressures, thus offering little hope of stabilizing this
material without chemical doping. For MoC, another material for which
stoichiometric fabrication in the B1-structure has not proven possible, we find
that all of the cubic elastic constants are positive, indicating elastic
stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as
well), further illustrating the rich behavior of carbo-nitride materials. We
also present additional electronic structure results for several transition
metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in
the properties of these materials. Deviations from strict electron counting
dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR
Perisylvian white matter connectivity in the human right hemisphere
Background By using diffusion tensor magnetic resonance imaging (DTI) and subsequent tractography, a perisylvian language network in the human left hemisphere recently has been identified connecting Brocas's and Wernicke's areas directly (arcuate fasciculus) and indirectly by a pathway through the inferior parietal cortex. Results Applying DTI tractography in the present study, we found a similar three-way pathway in the right hemisphere of 12 healthy individuals: a direct connection between the superior temporal and lateral frontal cortex running in parallel with an indirect connection. The latter composed of a posterior segment connecting the superior temporal with the inferior parietal cortex and an anterior segment running from the inferior parietal to the lateral frontal cortex. Conclusion The present DTI findings suggest that the perisylvian inferior parietal, superior temporal, and lateral frontal corticies are tightly connected not only in the human left but also in the human right hemisphere
Extraction of prefronto-amygdalar pathways by combining probability maps
Many recent studies reported altered functional connectivity within the frontolimbic circuitry in a wide range of neuropsychiatric disorders. However, functional connectivity must rely on structural connections. In this study we applied a novel probabilistic fiber tracking method to assess the structural connectivity between the amygdala and different prefrontal brain regions in vivo. Twenty healthy subjects were investigated with diffusion tensor imaging. Probabilistic fiber tracking was started from the amygdala and different prefrontal brain regions. Resulting probability maps were combined using an extended multiplication of probabilistic maps to identify the most probable anatomical pathways connecting these structures. We found one ventral pathway through the uncinate fascicle, connecting the amygdala and the medial and lateral orbitofrontal cortices. In addition to this ventral pathway, we depicted distinct dorsal pathways (medial and lateral), which connect the amygdala with the anterior cingulate cortex and the dorsolateral prefrontal cortex. The dorso-medial pathway proceeds through the inferior thalamic peduncle, while the dorsolateral pathway travels through the external capsule. We believe that our approach provides a promising tool to assess the integrity of specific structural connections in patients with neuropsychiatric disorders. Β© 2009 Elsevier Ireland Ltd. All rights reserved
Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at 200, 62.4, and 39 GeV
We present measurements of elliptic flow () of electrons from the decays
of heavy-flavor hadrons () by the STAR experiment. For Au+Au collisions
at 200 GeV we report , for transverse momentum
() between 0.2 and 7 GeV/c using three methods: the event plane method
({EP}), two-particle correlations ({2}), and four-particle
correlations ({4}). For Au+Au collisions at = 62.4 and
39 GeV we report {2} for GeV/c. {2} and {4} are
non-zero at low and intermediate at 200 GeV, and {2} is consistent
with zero at low at other energies. The {2} at the two lower beam
energies is systematically lower than at 200 GeV for
GeV/c. This difference may suggest that charm quarks interact less
strongly with the surrounding nuclear matter at those two lower energies
compared to GeV.Comment: Version accepted by PR
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+Ο+Ο- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2Β±0.6(stat)Β±0.1(syst)Β±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bcβ(2S31)+ state reconstructed without the low-energy photon from the Bcβ(1S31)+βBc+Ξ³ decay following Bcβ(2S31)+βBcβ(1S31)+Ο+Ο-. A second state is seen with a global (local) statistical significance of 2.2Ο (3.2Ο) and a mass of 6872.1Β±1.3(stat)Β±0.1(syst)Β±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Juno Plasma Wave Observations at Ganymede.
The Juno Waves instrument measured plasma waves associated with Ganymede's magnetosphere during its flyby on 7 June, day 158, 2021. Three distinct regions were identified including a wake, and nightside and dayside regions in the magnetosphere distinguished by their electron densities and associated variability. The magnetosphere includes electron cyclotron harmonic emissions including a band at the upper hybrid frequency, as well as whistler-mode chorus and hiss. These waves likely interact with energetic electrons in Ganymede's magnetosphere by pitch angle scattering and/or accelerating the electrons. The wake is accentuated by low-frequency turbulence and electrostatic solitary waves. Radio emissions observed before and after the flyby likely have their source in Ganymede's magnetosphere.884711 - European Research Council; 699041X - Southwest Research Institute; Q99064JAR - Southwest Research Institute; 80NSSC20K0557 - NASAPublished versio
Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments
MRI and CT in the diagnosis of coronary artery disease: indications and applications
In recent years, technical advances and improvements in cardiac computed tomography (CT) and cardiac magnetic resonance imaging (MRI) have provoked increasing interest in the potential clinical role of these techniques in the non-invasive work-up of patients with suspected coronary artery disease (CAD) and correct patient selection for these emerging imaging techniques. In the primary detection or exclusion of significant CAD, e.g. in the patient with unspecific thoracic complaints, and also in patients with known CAD or advanced stages of CAD, both CT and MRI yield specific advantages. In this review, the major aspects of non-invasive MR and CT imaging in the diagnosis of CAD will be discussed. The first part describes the clinical value of contrast-enhanced non-invasive CT coronary angiography (CTCA), including the diagnostic accuracy of CTCA for the exclusion or detection of significant CAD with coronary artery stenoses that may require angioplastic intervention, as well as potentially valuable information on the coronary artery vessel wall. In the second section, the potential of CT for the imaging of myocardial viability and perfusion will be highlighted. In the third and final part, the range of applications of cardiac MRI in CAD patients will be outlined
- β¦