126 research outputs found

    Three Comments on Ethics

    Get PDF

    Symmetry groupoids and patterns of synchrony in coupled cell networks

    Get PDF
    A coupled cell system is a network of dynamical systems, or “cells,” coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only mechanism that can create such states in a coupled cell system and show that it is not. The key idea is to replace the symmetry group by the symmetry groupoid, which encodes information about the input sets of cells. (The input set of a cell consists of that cell and all cells connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with the corresponding internal dynamics and couplings—are precisely those that are equivariant under the symmetry groupoid. A pattern of synchrony is “robust” if it arises for all admissible vector fields. The first main result shows that robust patterns of synchrony (invariance of “polydiagonal” subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an equivalence relation on cells is “balanced.” The second main result shows that admissible vector fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled cell network, the “quotient network.” The existence of quotient networks has surprising implications for synchronous dynamics in coupled cell systems

    Innocent strategies as presheaves and interactive equivalences for CCS

    Get PDF
    Seeking a general framework for reasoning about and comparing programming languages, we derive a new view of Milner's CCS. We construct a category E of plays, and a subcategory V of views. We argue that presheaves on V adequately represent innocent strategies, in the sense of game semantics. We then equip innocent strategies with a simple notion of interaction. This results in an interpretation of CCS. Based on this, we propose a notion of interactive equivalence for innocent strategies, which is close in spirit to Beffara's interpretation of testing equivalences in concurrency theory. In this framework we prove that the analogues of fair and must testing equivalences coincide, while they differ in the standard setting.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Categorical Models for a Semantically Linear Lambda-calculus

    Full text link
    This paper is about a categorical approach to model a very simple Semantically Linear lambda calculus, named Sll-calculus. This is a core calculus underlying the programming language SlPCF. In particular, in this work, we introduce the notion of Sll-Category, which is able to describe a very large class of sound models of Sll-calculus. Sll-Category extends in the natural way Benton, Bierman, Hyland and de Paiva's Linear Category, in order to soundly interpret all the constructs of Sll-calculus. This category is general enough to catch interesting models in Scott Domains and Coherence Spaces

    Formalizing of Category Theory in Agda

    Full text link
    The generality and pervasiness of category theory in modern mathematics makes it a frequent and useful target of formalization. It is however quite challenging to formalize, for a variety of reasons. Agda currently (i.e. in 2020) does not have a standard, working formalization of category theory. We document our work on solving this dilemma. The formalization revealed a number of potential design choices, and we present, motivate and explain the ones we picked. In particular, we find that alternative definitions or alternative proofs from those found in standard textbooks can be advantageous, as well as "fit" Agda's type theory more smoothly. Some definitions regarded as equivalent in standard textbooks turn out to make different "universe level" assumptions, with some being more polymorphic than others. We also pay close attention to engineering issues so that the library integrates well with Agda's own standard library, as well as being compatible with as many of supported type theories in Agda as possible

    Of Course and Courses

    Full text link

    Selected papers

    No full text
    corecore