70 research outputs found

    The Spectrum and Variability of Circular Polarization in Sagittarius A* from 1.4 to 15 GHz

    Get PDF
    We report here multi-epoch, multi-frequency observations of the circular polarization in Sagittarius A*, the compact radio source in the Galactic Center. Data taken from the VLA archive indicate that the fractional circular polarization at 4.8 GHz was -0.31% with an rms scatter of 0.13% from 1981 to 1998, in spite of a factor of 2 change in the total intensity. The sign remained negative over the entire time range, indicating a stable magnetic field polarity. In the Summer of 1999 we obtained 13 epochs of VLA A-array observations at 1.4, 4.8, 8.4 and 15 GHz. In May, September and October of 1999 we obtained 11 epochs of Australia Telescope Compact Array observations at 4.8 and 8.5 GHz. In all three of the data sets, we find no evidence for linear polarization greater than 0.1% in spite of strong circular polarization detections. Both VLA and ATCA data sets support three conclusions regarding the fractional circular polarization: the average spectrum is inverted with a spectral index ~0.5 +/- 0.2; the degree of variability is roughly constant on timescales of days to years; and, the degree of variability increases with frequency. We also observed that the largest increase in fractional circular polarization was coincident with the brightest flare in total intensity. Significant variability in the total intensity and fractional circular polarization on a timescale of 1 hour was observed during this flare, indicating an upper limit to the size of 70 AU at 15 GHz. The fractional circular polarization at 15 GHz reached -1.1% and the spectral index is strongly inverted during this flare. We conclude that the spectrum has two components that match the high and low frequency total intensity components. (abridged)Comment: Accepted for publication in ApJ, 40 pages, 18 figure

    Radio Observations of the Hubble Deep Field South region: I. Survey Description and Initial Results

    Full text link
    This paper is the first of a series describing the results of the Australia Telescope Hubble Deep Field South (ATHDFS) radio survey. The survey was conducted at four wavelengths - 20, 11, 6, and 3 cm, over a 4-year period, and achieves an rms sensitivity of about 10 microJy at each wavelength. We describe the observations and data reduction processes, and present data on radio sources close to the centre of the HDF-S. We discuss in detail the properties of a subset of these sources. The sources include both starburst galaxies and galaxies powered by an active galactic nucleus, and range in redshift from 0.1 to 2.2. Some of them are characterised by unusually high radio-to-optical luminosities, presumably caused by dust extinction.Comment: Accepted by AJ. 32 pages, 4 tables, 3 figures. PDF with full-resolution figures is on http://www.atnf.csiro.au/people/rnorris/N197.pd

    Broad-band radio circular polarization spectrum of the relativistic jet in PKS B2126-158

    Get PDF
    We present full Stokes radio polarization observations of the quasar PKS B2126−158 (z = 3.268) from 1 to 10 GHz using the Australia Telescope Compact Array. The source has large fractional circular polarization (CP), mc ≡ |V|/I, detected at high significance across the entire band (from 15 to 90σ per 128 MHz subband). This allows us to construct the most robust CP spectrum of an active galactic nucleus (AGN) jet to date. We find mc ∝ Îœ+0.60 ± 0.03 from 1.5 to 6.5 GHz, with a peak of mc ∌ 1 per cent before the spectrum turns over somewhere between 6.5 and 8 GHz, above which mc ∝ Μ−3.0 ± 0.4. The fractional linear polarization (LP;p) varies from 0.2 to ∌1 per cent across our frequency range and is strongly anticorrelated with the fractional CP, with a best-fitting power law giving mc ∝ p−0.24 ± 0.03. This is the first clear relation between the observed LP and CP of an AGN jet, revealing the action of Faraday conversion of LP to CP within the jet. More detailed modelling in conjunction with high spatial resolution observations are required to determine the true driving force behind the conversion (i.e. magnetic twist or internal Faraday rotation). In particular determining whether the observed Faraday rotation is internal or entirely external to the jet is key to this goal. The simplest interpretation of our observations favours some internal Faraday rotation, implying that Faraday rotation-driven conversion of LP to CP is the dominant CP generation mechanism. In this case, a small amount of vector-ordered magnetic field along the jet axis is required, along with internal Faraday rotation from the low-energy end of the relativistic electron energy spectrum in an electron–proton-dominated jet

    Discovery of circularly polarised radio emission from SS 433

    Get PDF
    We report the discovery of circularly polarised radio emission from the radio-jet X-ray binary SS 433 with the Australia Telescope Compact Array. The flux density spectrum of the circular polarization, clearly detected at four frequencies between 1 - 9 GHz, has a spectral index of (-0.9 +/- 0.1). Multiple components in the source and a lack of very high spatial resolution do not allow a unique determination of the origin of the circular polarization, nor of the spectrum of fractional polarization. However, we argue that the emission is likely to arise in the inner regions of the binary, possibly via propagation-induced conversion of linear to circular polarization, and the fractional circular polarization of these regions may be as high as 10%. Observations such as these have the potential to investigate the composition, whether pairs or baryonic, of the ejecta from X-ray binaries.Comment: Accepted for publication in ApJ Letter

    The extragalactic radio-source population at 95 GHz

    Full text link
    We have used the Australia Telescope Compact Array (ATCA) at 95GHz to carry out continuum observations of 130 extragalactic radio sources selected from the Australia Telescope 20GHz (AT20G) survey. Over 90% of these sources are detected at 95 GHz, and we use a triple-correlation method to measure simultaneous 20 and 95 GHz flux densities. We show that the ATCA can measure 95GHz flux densities to ~10% accuracy in a few minutes for sources above ~50mJy. The median 20-95GHz spectral index does not vary significantly with flux density for extragalactic sources with S20>150 mJy. This allows us to estimate the extragalactic radio source counts at 95GHz by combining our observed 20-95GHz spectral-index distribution with the accurate 20GHz source counts measured in the AT20G survey. The resulting 95GHz source counts down to 80 mJy are significantly lower than those found by several previous studies. The main reason is that most radio sources with flat or rising spectra in the frequency range 5-20GHz show a spectral turnover between 20 and 95 GHz. As a result, there are fewer 95GHz sources (by almost a factor of two at 0.1 Jy) than would be predicted on the basis of extrapolation from the source populations seen in lower-frequency surveys. We also derive the predicted confusion noise in CMB surveys at 95GHz and find a value 20-30% lower than previous estimates. The 95GHz source population at the flux levels probed by this study is dominated by QSOs with a median redshift z~1. We find a correlation between optical magnitude and 95GHz flux density which suggests that many of the brightest 95 GHz sources are relativistically beamed, with both the optical and millimetre continuum significantly brightened by Doppler boosting.Comment: Replaced with final version (MNRAS, in press), 15 pages plus two landscape data table

    Radio observations of the planetary nebula around the OH/IR Star OH354.88-0.54 (V1018 Sco)

    Full text link
    We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptoticgiant branch phase. Two regions within the optical nebula are clearly detected in nonthermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf-Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PN's slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned withany obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.Comment: 11 pages, LaTeX (mn2e.cls), incl. 9 PostScript (ps or eps) figures and 2 tables. Accepted by MNRA
    • 

    corecore