108 research outputs found

    Nonlinear Meissner Effect in CuO Superconductors

    Full text link
    Recent theories of the NMR in the CuO superconductors are based on a spin-singlet dx2−y2d_{x^2-y^2} order parameter. Since this state has nodal lines on the Fermi surface, nonlinear effects associated with low-energy quasiparticles become important, particularly at low temperatures. We show that the field-dependence of the supercurrent, below the nucleation field for vortices, can be used to locate the positions of the nodal lines of an unconventional gap in momentum space, and hence test the proposed dx2−y2d_{x^2-y^2} state.Comment: 5 pages (RevTex), 1 figure (postscript file incl.

    Surface superconductivity and order parameter suppression in UPt3_3

    Full text link
    We show that a recent measurement of surface superconductivity in UPt3_3 (Keller {\it et. al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994)) can be understood if the superconducting pair wavefunction is suppressed anisotropically at a vacuum to superconductor interface. Further measurements of surface superconductivity can distinguish between the various phenomenological models of superconducting UPt3_3.Comment: 4 pages, latex, 2 Figures available upon request ([email protected]

    Effect of diffusive boundaries on surface superconductivity in unconventional superconductors

    Full text link
    Boundary conditions for a superconducting order parameter at a diffusive scattering boundary are derived from microscopic theory. The results indicate that for all but isotropic gap functions the diffusive boundary almost completely suppresses surface superconductivity in the Ginzburg-Landau regime. This indicates that in anisotropic superconductors surface superconductivity can only be observed for surface normals along high symmetry directions where atomically clean surfaces can be cleaved.Comment: Latex File, 12 pages, 2 Postscript figures, to appear in Phys. Rev. B (June 1 1996

    Influence of a magnetic field on the antiferromagnetic order in UPt_3

    Full text link
    A neutron diffraction experiment was performed to investigate the effect of a magnetic field on the antiferromagnetic order in the heavy fermion superconductor UPt_3. Our results show that a field in the basal plane of up to 3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain nor rotate the moment. This has a direct impact on current theories for the superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.

    Unconventional Pairing in Heavy Fermion Metals

    Full text link
    The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients are {\it universal}, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures kBT≪γ≪Δ0k_B T \ll \gamma \ll \Delta_0, where γ\gamma is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3_3 thermal conductivity measurements favor an E1gE_{1g} or E2uE_{2u} ground state. Measurements at ultra-low temperatures should distinguish different pairing states.Comment: 8 pages in a LaTex (3.0) file plus 5 Figures in PostScript. To appear in the Proceedings of the XXI International Conference on Low Temperature Physics held in Prague, 8-14 August 199

    Phase diagram of UPt3_3 in the E1gE_{1g} model

    Full text link
    The phase diagram of the unconventional superconductor UPt3_3 is explained under the long-standing hypothesis that the pair wavefunction belongs to the E1gE_{1g} representation of the point group. The main objection to this theory has been that it disagrees with the experimental phase diagram when a field is applied along the c-axis. By a careful analysis of the free energy this objection is shown to be incorrect. This singlet theory also explains the unusual anisotropy in the upper critical field curves, often thought to indicate a triplet pair function.Comment: 11 pages, Revtex, 2 figures (uuencoded, gzip'ed Postscript

    The Current Carried by Bound States of a Superconducting Vortex

    Full text link
    We investigate the spectrum of quasiparticle excitations in the core of isolated pancake vortices in clean layered superconductors. Analysis of the spectral current density shows that both the circular current around the vortex center as well as any transport current through the vortex core is carried by localized states bound to the core by Andreev scattering. Hence the physical properties of the core are governed in clean high-κ\kappa superconductors (e.g. the cuprate superconductors) by the Andreev bound states, and not by normal electrons as it is the case for traditional (dirty) high-κ\kappa superconductors.Comment: 17 pages in a RevTex (3.0) file plus 5 Figures in PostScript. Submitted to Physical Review

    E1gE_{1g} model of superconducting UPt3_3

    Full text link
    The phase diagram of superconducting UPt3_3 is explained in a Ginzburg-Landau theory starting from the hypothesis that the order parameter is a pseudo-spin singlet which transforms according to the E1gE_{1g} representation of the D6hD_{6h} point group. We show how to compute the positions of the phase boundaries both when the applied field is in the basal plane and when it is along the c-axis. The experimental phase diagrams as determined by longitudinal sound velocity data can be fit using a single set of parameters. In particular the crossing of the upper critical field curves for the two field directions and the apparent isotropy of the phase diagram are reproduced. The former is a result of the magnetic properties of UPt3_3 and their contribution to the free energy in the superconducting state. The latter is a consequence of an approximate particle-hole symmetry. Finally we extend the theory to finite pressure and show that, in contrast to other models, the E1gE_{1g} model explains the observed pressure dependence of the phase boundaries.Comment: RevTex, 29 pages, 18 PostScript figures in a uuencoded, gzipped tar file. PostScript version of paper, tar file of PostScript figures and individual PostScript figures are also available via anonymous ftp at ftp://nym.physics.wisc.edu/anonymou/papers/upt3

    The Effect of Surfaces on the Tunneling Density of States of an Anisotropically Paired Superconductor

    Full text link
    We present calculations of the tunneling density of states in an anisotropically paired superconductor for two different sample geometries: a semi-infinite system with a single specular wall, and a slab of finite thickness and infinite lateral extent. In both cases we are interested in the effects of surface pair breaking on the tunneling spectrum. We take the stable bulk phase to be of dx2−y2d_{x^2-y^2} symmetry. Our calculations are performed within two different band structure environments: an isotropic cylindrical Fermi surface with a bulk order parameter of the form Δ∼kx2−ky2\Delta\sim k_x^2-k_y^2, and a nontrivial tight-binding Fermi surface with the order parameter structure coming from an anti-ferromagnetic spin-fluctuation model. In each case we find additional structures in the energy spectrum coming from the surface layer. These structures are sensitive to the orientation of the surface with respect to the crystal lattice, and have their origins in the detailed form of the momentum and spatial dependence of the order parameter. By means of tunneling spectroscopy, one can obtain information on both the anisotropy of the energy gap, |\Delta(\p)|, as well as on the phase of the order parameter, \Delta(\p) = |\Delta(\p)|e^{i\varphi(\p)}.Comment: 14 pages of revtex text with 11 compressed and encoded figures. To appear in J. Low Temp. Phys., December, 199

    Phase Diagram of the Two-Channel Kondo Lattice

    Full text link
    The phase diagram of the two-channel Kondo lattice model is examined with a Quantum Monte Carlo simulation in the limit of infinite dimensions. Commensurate (and incommensurate) antiferromagnetic and superconducting states are found. The antiferromagnetic transition is very weak and continuous; whereas the superconducting transition is discontinuous to an odd-frequency channel-singlet and spin-singlet pairing state.Comment: 5 pages, LaTeX and 4 PS figures (see also cond-mat/9609146 and cond-mat/9605109
    • …
    corecore