80 research outputs found

    Domain Walls in Superfluid 3He-B

    Full text link
    We consider domain walls between regions of superfluid 3He-B in which one component of the order parameter has the opposite sign in the two regions far from one another. We report calculations of the order parameter profile and the free energy for two types of domain wall, and discuss how these structures are relevant to superfluid 3He confined between two surfaces.Comment: 6 pages with 3 figures. Conference proceedings of QSF 2004, Trento, Ital

    Theory of Nonequilibrium Spin Transport and Spin Transfer Torque in Superconducting-Ferromagnetic Nanostructures

    Full text link
    Spin transport currents and the spin-transfer torques in voltage-biased superconducting-ferromagnetic nanopillars (SFNFS point contacts) are computed. We develop and implement an algorithm based on the Ricatti formulation of the quasiclassical theory of superconductivity to solve the time-dependent boundary conditions for the nonequilibrium Green's functions for spin transport through the ferromagnetic interfaces. A signature of the nonequilibrium torque is a component perpendicular to the plane spanned by the two ferromagnetic moments. The perpendicular component is absent in normal-metal-ferromagnetic nanopillars (NFNFN) contacts, but is shown to have the same order of magnitude as the in-plane torque for non-equilibrium SFNFS contacts. The out-of-plane torque is due to the rotation of quasiparticle spin by the exchange fields of the ferromagnetic layers. In the ballistic limit the equilibrium torque is related to the spectrum of spin-polarized Andreev bound states, while the {\sl ac} component, for small bias voltages, is determined by the nearly adiabatic dynamics of the Andreev bound states. The nonlinear voltage dependence of the non-equilibrium torque, including the subharmonic gap structure and the high-voltage asymptotics, is attributed to the interplay between multiple Andreev reflections, spin filtering and spin mixing. These properties of spin angular momentum transport may be exploited to control the state of nanomagnets.Comment: 15 pages, 14 figure

    ``Cosmological'' scenario for A-B phase transition in superfluid 3He

    Full text link
    At a very rapid superfluid transition in 3^3He, follows after a reaction with single neutron, the creation of topological defects (vortices) has recently been demonstrated in accordance with the Kibble-Zurek scenario for the cosmological analogue. We discuss here the extension of the Kibble-Zurek scenario to the case when alternative symmetries may be broken and different states nucleated independently. We have calculated the nucleation probability of the various states of superfluid 3^3He during a superfluid transition. Our results can explain the transition from supercooled AA phase to the BB phase, triggered by nuclear reaction. The new scenario is an alternative to the well-known ``baked Alaska'' scenario.Comment: RevTex file, 4 pages, 3 figures, submitted to Phys. Rev. Let

    Superfluid Phase Transitions in Dense Neutron Matter

    Get PDF
    The phase transitions in a realistic system with triplet pairing, dense neutron matter, have been investigated. The spectrum of phases of the 3P2−3F2^3P_2-^3F_2 model, which adequately describes pairing in this system, is analytically constructed with the aid of a separation method for solving BCS gap equation in states of arbitrary angular momentum. In addition to solutions involving a single value of the magnetic quantum number (and its negative), there exist ten real multicomponent solutions. Five of the corresponding angle-dependent order parameters have nodes, and five do not. In contrast to the case of superfluid 3^3He, transitions occur between phases with nodeless order parameters. The temperature dependence of the competition between the various phases is studied.Comment: 11 pages, 2 figure

    Universalities of Triplet Pairing in Neutron Matter

    Full text link
    The fundamental structure of the full set of solutions of the BCS 3P2^3 P_2 pairing problem in neutron matter is established. The relations between different spin-angle components in these solutions are shown to be practically independent of density, temperature, and the specific form of the pairing interaction. The spectrum of pairing energies is found to be highly degenerate.Comment: 11 page

    Phase Diagram of the Two-Channel Kondo Lattice

    Full text link
    The phase diagram of the two-channel Kondo lattice model is examined with a Quantum Monte Carlo simulation in the limit of infinite dimensions. Commensurate (and incommensurate) antiferromagnetic and superconducting states are found. The antiferromagnetic transition is very weak and continuous; whereas the superconducting transition is discontinuous to an odd-frequency channel-singlet and spin-singlet pairing state.Comment: 5 pages, LaTeX and 4 PS figures (see also cond-mat/9609146 and cond-mat/9605109

    Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3

    Full text link
    We apply the staggered-pairing Ginzburg-Landau phenomenology to describe superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied successfully to UPt_3 so it explains why these materials have qualitatively different superconducting phase diagrams although they have the same point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component superconducting order parameter transforming as an H-point irreducible representation of the space group. Staggered superconductivity can induce charge-density waves characterized by new Bragg peaks suggesting experimental tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure

    Fluctuation Conductivity in Unconventional Superconductors near Critical Disorder

    Full text link
    The fluctuation conductivity σs\sigma_{\rm s} in bulk superconductors with non s-wave pairing and with nonmagnetic disorder of strength DD is studied at low TT and within the Gaussian approximation. It is shown by assuming a quasi two-dimensional (2D) electronic state that, only if the gap function d_\mu({\p}) is, as in a 2D p-wave pairing state, linear in the in-plane (relative) momentum {\p}_\perp, the in-plane fluctuation conductivity on the line D=DcD=D_c is weakly divergent in low TT limit. The present result may be useful in clarifying the true gap function of spin-triplet Sr2RuO4{\rm Sr_2RuO_4} through resistivity measurements.Comment: 8 pages, 1 figure, to be published in J. Phys. Soc. Jpn. 70, No.10 (2001
    • …
    corecore