148 research outputs found
Combinatorial complexity in o-minimal geometry
In this paper we prove tight bounds on the combinatorial and topological
complexity of sets defined in terms of definable sets belonging to some
fixed definable family of sets in an o-minimal structure. This generalizes the
combinatorial parts of similar bounds known in the case of semi-algebraic and
semi-Pfaffian sets, and as a result vastly increases the applicability of
results on combinatorial and topological complexity of arrangements studied in
discrete and computational geometry. As a sample application, we extend a
Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic
sets of fixed description complexity to this more general setting.Comment: 25 pages. Revised version. To appear in the Proc. London Math. So
Computing the First Few Betti Numbers of Semi-algebraic Sets in Single Exponential Time
In this paper we describe an algorithm that takes as input a description of a
semi-algebraic set , defined by a Boolean formula with atoms of
the form for
and outputs the first Betti numbers of ,
The complexity of the algorithm is where where s =
#({\mathcal P}) and which is
singly exponential in for any fixed constant. Previously, singly
exponential time algorithms were known only for computing the Euler-Poincar\'e
characteristic, the zero-th and the first Betti numbers
A complex analogue of Toda's Theorem
Toda \cite{Toda} proved in 1989 that the (discrete) polynomial time
hierarchy, , is contained in the class \mathbf{P}^{#\mathbf{P}},
namely the class of languages that can be decided by a Turing machine in
polynomial time given access to an oracle with the power to compute a function
in the counting complexity class #\mathbf{P}. This result, which illustrates
the power of counting is considered to be a seminal result in computational
complexity theory. An analogous result (with a compactness hypothesis) in the
complexity theory over the reals (in the sense of Blum-Shub-Smale real machines
\cite{BSS89}) was proved in \cite{BZ09}. Unlike Toda's proof in the discrete
case, which relied on sophisticated combinatorial arguments, the proof in
\cite{BZ09} is topological in nature in which the properties of the topological
join is used in a fundamental way. However, the constructions used in
\cite{BZ09} were semi-algebraic -- they used real inequalities in an essential
way and as such do not extend to the complex case. In this paper, we extend the
techniques developed in \cite{BZ09} to the complex projective case. A key role
is played by the complex join of quasi-projective complex varieties. As a
consequence we obtain a complex analogue of Toda's theorem. The results
contained in this paper, taken together with those contained in \cite{BZ09},
illustrate the central role of the Poincar\'e polynomial in algorithmic
algebraic geometry, as well as, in computational complexity theory over the
complex and real numbers -- namely, the ability to compute it efficiently
enables one to decide in polynomial time all languages in the (compact)
polynomial hierarchy over the appropriate field.Comment: 31 pages. Final version to appear in Foundations of Computational
Mathematic
Efficient algorithms for computing the Euler-Poincar\'e characteristic of symmetric semi-algebraic sets
Let be a real closed field and
an ordered domain. We consider the algorithmic problem of computing the
generalized Euler-Poincar\'e characteristic of real algebraic as well as
semi-algebraic subsets of , which are defined by symmetric
polynomials with coefficients in . We give algorithms for computing
the generalized Euler-Poincar\'e characteristic of such sets, whose
complexities measured by the number the number of arithmetic operations in
, are polynomially bounded in terms of and the number of
polynomials in the input, assuming that the degrees of the input polynomials
are bounded by a constant. This is in contrast to the best complexity of the
known algorithms for the same problems in the non-symmetric situation, which
are singly exponential. This singly exponential complexity for the latter
problem is unlikely to be improved because of hardness result
(-hardness) coming from discrete complexity theory.Comment: 29 pages, 1 Figure. arXiv admin note: substantial text overlap with
arXiv:1312.658
- β¦