205 research outputs found

    Minimal Model for Sand Dunes

    Full text link
    We propose a minimal model for aeolian sand dunes. It combines an analytical description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The model provides a qualitative understanding of important features of real dunes, such as their longitudinal shape and aspect ratio, the formation of a slip face, the breaking of scale invariance, and the existence of a minimum dune size.Comment: 4 pages, 4 figures, replaced with publishd versio

    Minimal model for aeolian sand dunes

    Full text link
    We present a minimal model for the formation and migration of aeolian sand dunes. It combines a perturbative description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The latter are shown to provide the characteristic length scale. The model can explain the origin of important features of dunes, such as the formation of a slip face, the broken scale invariance, and the existence of a minimum dune size. It also predicts the longitudinal shape and aspect ratio of dunes and heaps, their migration velocity and shape relaxation dynamics. Although the minimal model employs non-local expressions for the wind shear stress as well as for the sand flux, it is simple enough to serve as a very efficient tool for analytical and numerical investigations and to open up the way to simulations of large scale desert topographies.Comment: 19 pages, 22 figure

    A Continuum Saltation Model for Sand Dunes

    Full text link
    We derive a phenomenological continuum saltation model for aeolian sand transport that can serve as an efficient tool for geomorphological applications. The coupled differential equations for the average density and velocity of sand in the saltation layer reproduce both known equilibrium relations for the sand flux and the time evolution of the sand flux as predicted by microscopic saltation models. The three phenomenological parameters of the model are a reference height for the grain-air interaction, an effective restitution coefficient for the grain-bed interaction, and a multiplication factor characterizing the chain reaction caused by the impacts leading to a typical time or length scale of the saturation transients. We determine the values of these parameters by comparing our model with wind tunnel measurements. Our main interest are out of equilibrium situations where saturation transients are important, for instance at phase boundaries (ground/sand) or under unsteady wind conditions. We point out that saturation transients are indispensable for a proper description of sand flux over structured terrain, by applying the model to the windward side of an isolated dune, thereby resolving recently reported discrepancies between field measurements and theoretical predictions.Comment: 11 pages, 7 figure

    Corridors of barchan dunes: stability and size selection

    Get PDF
    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more than they loose sand, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads -- through the collision process -- to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further - yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E. Pictures of better quality available on reques

    Field evidence for the upwind velocity shift at the crest of low dunes

    Full text link
    Wind topographically forced by hills and sand dunes accelerates on the upwind (stoss) slopes and reduces on the downwind (lee) slopes. This secondary wind regime, however, possesses a subtle effect, reported here for the first time from field measurements of near-surface wind velocity over a low dune: the wind velocity close to the surface reaches its maximum upwind of the crest. Our field-measured data show that this upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first order closures. This effect, together with sand transport spatial relaxation, is at the origin of the mechanisms of dune initiation, instability and growth.Comment: 13 pages, 6 figures. Version accepted for publication in Boundary-Layer Meteorolog

    Collision dynamics of two barchan dunes simulated by a simple model

    Full text link
    The collision processes of two crescentic dunes called barchans are systematically studied using a simple computer simulation model. The simulated processes, coalescence, ejection and reorganization, qualitatively correspond to those observed in a water tank experiment. Moreover we found the realized types of collision depend both on the mass ratio and on the lateral distance between barchans under initial conditions. A simple set of differential equations to describe the collision of one-dimensional (1D) dunes is introduced.Comment: 4 pages, 5 figures : To be published in Journal of the Physical Society of Japa

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this second part we present the results on the photoproduction reactions and the electromagnetic properties of the resonances. The inclusion of all important final states up to sqrt(s) = 2 GeV allows for estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.

    A unitary model for meson-nucleon scattering

    Full text link
    In an effective Lagrangian model employing the K-matrix approximation we extract nucleon resonance parameters. To this end we analyze simultaneously all available data for reactions involving the final states πN\pi N, ππN\pi\pi N, ηN\eta N and KΛK \Lambda in the energy range mN+mπs1.9m_N + m_{\pi} \le \sqrt s \le 1.9 GeV. The background contributions are generated consistently from the relevant Feynman amplitudes, thus significantly reducing the number of free parameters.Comment: Revised version. 60 pages, 17 figures. Two figures and a short discussion (\pi N \to \eta N, K \Lambda amplitudes) added, typos and minor errors in the citations correcte

    Photon- and meson-induced reactions on the nucleon

    Full text link
    In an unitary effective Lagrangian model we develop a unified description of both meson scattering and photon-induced reactions on the nucleon. Adding the photon to an already existing model for meson-nucleon scattering yields both Compton and meson photoproduction amplitudes. In a simultaneous fit to all available data involving the final states γN\gamma N, πN\pi N, ππN\pi\pi N, ηN\eta N and KΛK \Lambda the parameters of the nucleon resonances are extracted.Comment: 57 pages, 14 figures, LaTex (uses Revtex and graphicx). Submitted to Phys. Rev. C. References updated, Fig. 14 change

    Statistical Theory of Spin Relaxation and Diffusion in Solids

    Full text link
    A comprehensive theoretical description is given for the spin relaxation and diffusion in solids. The formulation is made in a general statistical-mechanical way. The method of the nonequilibrium statistical operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation dynamics of a spin subsystem. Perturbation of this subsystem in solids may produce a nonequilibrium state which is then relaxed to an equilibrium state due to the interaction between the particles or with a thermal bath (lattice). The generalized kinetic equations were derived previously for a system weakly coupled to a thermal bath to elucidate the nature of transport and relaxation processes. In this paper, these results are used to describe the relaxation and diffusion of nuclear spins in solids. The aim is to formulate a successive and coherent microscopic description of the nuclear magnetic relaxation and diffusion in solids. The nuclear spin-lattice relaxation is considered and the Gorter relation is derived. As an example, a theory of spin diffusion of the nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown that due to the dipolar interaction between host nuclear spins and impurity spins, a nonuniform distribution in the host nuclear spin system will occur and consequently the macroscopic relaxation time will be strongly determined by the spin diffusion. The explicit expressions for the relaxation time in certain physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
    corecore