8,870 research outputs found
Meson and Quark Degrees of Freedom and the Radius of the Deuteron
The existing experimental data for the deuteron charge radius are discussed.
The data of elastic electron scattering are inconsistent with the value
obtained in a recent atomic physics experiment. Theoretical predictions based
on a nonrelativistic description of the deuteron with realistic nucleon-nucleon
potentials and with a rather complete set of meson-exchange contributions to
the charge operator are presented. Corrections arising from the quark-gluon
substructure of the nucleon are explored in a nonrelativistic quark model; the
quark-gluon corrections, not accounted for by meson exchange, are small. Our
prediction for the deuteron charge radius favors the value of a recent atomic
physics experiment.Comment: 20 pages, LaTeX, 4 Postscript figures, to appear in Few-Body-System
Three-Nucleon Force and the -Mechanism for Pion Production and Pion Absorption
The description of the three-nucleon system in terms of nucleon and
degrees of freedom is extended to allow for explicit pion production
(absorption) from single dynamic de-excitation (excitation) processes.
This mechanism yields an energy dependent effective three-body hamiltonean. The
Faddeev equations for the trinucleon bound state are solved with a force model
that has already been tested in the two-nucleon system above pion-production
threshold. The binding energy and other bound state properties are calculated.
The contribution to the effective three-nucleon force arising from the pionic
degrees of freedom is evaluated. The validity of previous coupled-channel
calculations with explicit but stable isobar components in the
wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as
postscript files upon request), CEBAF-TH-93-0
Probing the electron EDM with cold molecules
We present progress towards a new measurement of the electron electric dipole
moment using a cold supersonic beam of YbF molecules. Data are currently being
taken with a sensitivity of . We
therefore expect to make an improvement over the Tl experiment of Commins'
group, which currently gives the most precise result. We discuss the systematic
and statistical errors and comment on the future prospect of making a
measurement at the level of .Comment: 8 pages, 6 figures, proceedings of ICAP 200
Methylation landscape in the genome of higher plants of agronomical interest
In eukaryotic cells the methylation of cytosines in DNA is an essential mechanism which is implied in the dynamic organization of the genome structure, in relation to genes expression. Plant genomes contain a significant proportion and variable according to the species, of sequences which are likely to be methylated during the life of the plant. It is known that the establishment and the maintenance of methylation profiles in both genomic areas and specific sequences constitute a crucial mediator in the modulation of genes expression during development. Recent studies have evidenced the implication of epimutations in the adaptation of plants to their environment particularly in response to biotic and abiotic stresses. Recently, the complete mapping of methylation in the genomes of Arabidopsis thaliana and rice provided invaluable information on the distribution of methylation within genes in relation to their expression. The impact of changes in the methylation profiles on the characters of agronomic importance has not been intensively studied yet, whereas this question takes a considerable importance in the context of an increasing food demand and foreseen global climate changes. The METHYLANDSCAPE project proposes to isolate genomic DNA sequences on the basis of their degree of methylation and to connect the variation of their methylation profiles with, on the one hand, the expression of the corresponding genes and, on the other hand, with environmental or developmental processes. Thus, it should be possible to identify genes which expression is differentially controlled by methylation during development and/or in situation of stress, and likely to have an influence on the agronomic value of the plant. The METHYLANDSCAPE partners thus propose to bring signification advances in plant genomics on four original species, by integrating DNA methylation mapping and the relationship between epigenome and transcriptome, up to the generation of methylation-sensitive markers linked with characters of agronomic importance. (Texte intégral
Pulsed beams as field probes for precision measurement
We describe a technique for mapping the spatial variation of static electric,
static magnetic, and rf magnetic fields using a pulsed atomic or molecular
beam. The method is demonstrated using a beam designed to measure the electric
dipole moment of the electron. We present maps of the interaction region,
showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm
with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with
25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm
resolution. This new diagnostic technique is very powerful in the context of
high-precision atomic and molecular physics experiments, where pulsed beams
have not hitherto found widespread application.Comment: 6 pages, 12 figures. Figures heavily compressed to comply with
arxiv's antediluvian file-size polic
- âŠ