7 research outputs found

    Lateral patterning of multilayer InAs/GaAs(001) quantum dot structures by in-vacuo focused ion beam

    Full text link
    We report on the effects of patterning and layering on multilayer InAs/GaAs(001) quantum dot structures laterally ordered using an in vacuo focused ion beam. The patterned hole size and lateral pattern spacing affected the quantum dot size and the fidelity of the quantum dots with respect to the lateral patterns. 100% pattern fidelity was retained after six layers of dots for a 9.0 ms focused ion beam dwell time and 2.0 µm lateral pattern spacing. Analysis of the change in quantum dot size as a function of pattern spacing provided a means of estimating the maximum average adatom surface diffusion length to be approximately 500 nm, and demonstrated the ability to alter the wetting layer thickness via pattern spacing. Increasing the number of layers from six to 26 resulted in mound formation, which destroyed the pattern fidelity at close pattern spacings and led to a bimodal quantum dot size distribution as measured by atomic force microscopy. The bimodal size distribution also affected the optical properties of the dots, causing a split quantum dot photoluminescence peak where the separation between the split peaks increased with increasing pattern spacing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98602/1/0957-4484_23_13_135401.pd
    corecore