2,836 research outputs found

    Parameterized Algorithms for Min-Max Multiway Cut and List Digraph Homomorphism

    Get PDF
    In this paper we design {\sf FPT}-algorithms for two parameterized problems. The first is \textsc{List Digraph Homomorphism}: given two digraphs GG and HH and a list of allowed vertices of HH for every vertex of GG, the question is whether there exists a homomorphism from GG to HH respecting the list constraints. The second problem is a variant of \textsc{Multiway Cut}, namely \textsc{Min-Max Multiway Cut}: given a graph GG, a non-negative integer \ell, and a set TT of rr terminals, the question is whether we can partition the vertices of GG into rr parts such that (a) each part contains one terminal and (b) there are at most \ell edges with only one endpoint in this part. We parameterize \textsc{List Digraph Homomorphism} by the number ww of edges of GG that are mapped to non-loop edges of HH and we give a time 2O(logh+2log)n4logn2^{O(\ell\cdot\log h+\ell^2\cdot \log \ell)}\cdot n^{4}\cdot \log n algorithm, where hh is the order of the host graph HH. We also prove that \textsc{Min-Max Multiway Cut} can be solved in time 2O((r)2logr)n4logn2^{O((\ell r)^2\log \ell r)}\cdot n^{4}\cdot \log n. Our approach introduces a general problem, called {\sc List Allocation}, whose expressive power permits the design of parameterized reductions of both aforementioned problems to it. Then our results are based on an {\sf FPT}-algorithm for the {\sc List Allocation} problem that is designed using a suitable adaptation of the {\em randomized contractions} technique (introduced by [Chitnis, Cygan, Hajiaghayi, Pilipczuk, and Pilipczuk, FOCS 2012]).Comment: An extended abstract of this work will appear in the Proceedings of the 10th International Symposium on Parameterized and Exact Computation (IPEC), Patras, Greece, September 201

    Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures

    Full text link
    We propose and analyze theoretically an experimental setup for detecting the elusive Majorana particle in semiconductor-superconductor heterostructures. The experimental system consists of one-dimensional semiconductor wire with strong spin-orbit Rashba interaction embedded into a superconducting quantum interference device. We show that the energy spectra of the Andreev bound states at the junction are qualitatively different in topologically trivial (i.e., not containing any Majorana) and nontrivial phases having an even and odd number of crossings at zero energy, respectively. The measurement of the supercurrent through the junction allows one to discern topologically distinct phases and observe a topological phase transition by simply changing the in-plane magnetic field or the gate voltage. The observation of this phase transition will be a direct demonstration of the existence of Majorana particles.Comment: 4 pages, 3 figures, final version published in Phys. Rev. Let

    Explicit linear kernels via dynamic programming

    Get PDF
    Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with the result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by Fomin et al. [SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013] to graphs excluding a fixed topological minor. Typically, these results guarantee the existence of linear or polynomial kernels on sparse graph classes for problems satisfying some generic conditions but, mainly due to their generality, it is not clear how to derive from them constructive kernels with explicit constants. In this paper we make a step toward a fully constructive meta-kernelization theory on sparse graphs. Our approach is based on a more explicit protrusion replacement machinery that, instead of expressibility in CMSO logic, uses dynamic programming, which allows us to find an explicit upper bound on the size of the derived kernels. We demonstrate the usefulness of our techniques by providing the first explicit linear kernels for rr-Dominating Set and rr-Scattered Set on apex-minor-free graphs, and for Planar-\mathcal{F}-Deletion on graphs excluding a fixed (topological) minor in the case where all the graphs in \mathcal{F} are connected.Comment: 32 page

    How to realize a robust practical Majorana chain in a quantum dot-superconductor linear array

    Full text link
    Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions, which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermions is the supression of topological superconductivity by disorder. We show that Majorana fermions protected by a robust topological gap can occur at the ends of a chain of quantum dots connected by s-wave superconductors. In the appropriate parameter regime, we establish that the quantum dot/superconductor system is equivalent to a 1D Kitaev chain, which can be tuned to be in a robust topological phase with Majorana end modes even in the case where the quantum dots and superconductors are both strongly disordered. Such a spin-orbit coupled quantum dot - s-wave superconductor array provides an ideal experimental platform for the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to include more general proof for localized Majorana fermion
    corecore