57 research outputs found

    In Vitro and In Vivo Wide-Spectrum Dual Antimycetomal Activity of Eight Essential Oils Coupled with Chemical Composition and Metabolomic Profiling

    Get PDF
    Mycetoma, a neglected infection of subcutaneous tissues, poses a significant health burden, especially in tropical regions. It is caused by fungal (eumycetoma) and bacterial (actinomycetoma) pathogens, with current treatments often providing unsatisfactory outcomes. This study aims todiscover novel broad-spectrum antimicrobial agents to circumvent the lengthy and costly diagnostic procedures. Eight essential oils (EOs) from the roots and aerial parts of Geigeria alata, Lavandula angustifolia, Melaleuca alternifolia, Myristica fragrans, Pimpinella anisum, Syzigum aromaticum, and Thymus vulgaris were prepared using steam distillation. The in vitro antimycetomal activity against Madurella mycetomatis and Actinomadura madurae strains was assessed using resazurin assays. The chemical compositions of the EOs were analyzed using gas chromatography and mass spectrometry (GC–MS). Promising EOs underwent further in vivo toxicity and efficacy testing in Galleria mellonella larvae models. EOs of G. alata roots, M. fragrans, P. anisum, S. aromaticum, and T. vulgaris showed widespectrum dual in vitro antimycetomal activity against all tested strains, with minimum inhibitory concentrations (MICs) ranging from 0.004 to 0.125% v/v. G. alata aerial parts and L. angustifolia EOsdemonstrated activity predominantly against A. madurae, while M. alternifolia EO did not inhibit anytested strains. M. fragrans and P. anisum EOs significantly enhanced the survival of M. mycetomatisinfectedlarvae without inducing toxicity in uninfected larvae. Notably, P. anisum EO tended toenhance the survival of A. madurae-infected larvae, ranking it as the most promising EO amongthose tested. The investigated EOs, particularly P. anisum, exhibited promising broad-spectrumantimycetomal activity against fungal and bacterial pathogens responsible for mycetoma. Thesefindings highlight the potential of essential oils as a basis for developing novel antimycetomal agents,offering hope for improved treatment strategies for this neglected disease

    Chemotypic Characterization and Biological Activity of Rosmarinus officinalis

    No full text
    Rosemary (Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%–37.7%), 1,8-cineole (16.1%–29.3%), (+)-verbenone (0.8%–16.9%), (−)-borneol (2.1%–6.9%), (−)-camphor (0.7%–7.0%), and racemic limonene (1.6%–4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities

    Satyal, Prabodh

    No full text

    Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations

    No full text
    Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris

    Essential Oil Chemotypes of Four Vietnamese <i>Curcuma</i> Species Cultivated in North Alabama

    No full text
    Curcuma (turmeric) species are important culinary and medicinal plants, and the essential oils of Curcuma rhizomes have demonstrated promising pharmacological properties. The essential oils (EOs) of Curcuma species possess a wide variety of pharmacological properties, including anti-inflammatory, anticancerous, antiproliferative, hypocholesterolemic, antidiabetic, antirheumatic, hypotensive, antioxidant, antimicrobial, antiviral, antithrombotic, antityrosinase, and cyclooxygenase-1 (COX-1) inhibitory activities, among others. Curcuma oils are also known to enhance immune function, promote blood circulation, accelerate toxin elimination, and stimulate digestion. C. longa (turmeric) and C. zedoaria (zedoary) are the most extensively studied species of Curcuma due to their high commercial value. There is some interest in expanding the cultivation of Curcuma species to the southern regions in North America where the climate is favorable. The purpose of this work was to examine the rhizome essential oil composition of four species of Curcuma (C. aromatica, C. caesia, C. longa, C. zanthorrhiza) that were obtained from Vietnam and cultivated in North Alabama. The rhizome essential oils were obtained by hydrodistillation and analyzed by gas chromatographic techniques. The essential oils of C. aromatica were dominated by curzerenone (14.7–18.6%), germacrone (10.7–14.7%), 1,8-cineole (5.2–11.7%), and an unidentified component (8.7–11.0%). The major components in C. longa rhizome oil were ar-turmerone (8.3–36.1%), α-turmerone (12.7–15.2%), β-turmerone (5.0–15.4%), α-zingiberene (4.6–13.9%), and β-sesquiphellandrene (4.6–10.0%). The essential oils of C. caesia and C. zanthorrhiza were rich in curzerenone, curdione, and germacrone. These adapted turmeric varieties in North Alabama have potential use for medical purposes and medicinal plant oil market demands in the U.S

    Composition and Biological Activities of Murraya paniculata (L.) Jack Essential Oil from Nepal

    No full text
    Murraya paniculata (L.) Jack, a small tropical evergreen shrub growing in Nepal, has numerous uses in traditional medicine for treatment of abdominal pain, diarrhea, stomach ache, headache, edema, thrombosis, and blood stasis. The present study investigated the chemical composition and bioactivities of the leaf essential oil from M. paniculata from Nepal. The essential oil from leaves was obtained by hydrodistillation and a detailed chemical analysis was conducted by gas chromatography-mass spectrometry (GC-MS). The essential oil was screened for antimicrobial activity using the microbroth dilution test, for nematicidal activity against Caenorhabditis elegans, and for lethality against brine shrimp (Artemia salina). A total of 76 volatile components were identified from the essential oil. The major components were methyl palmitate (11.1%), isospathulenol (9.4%), (E,E)-geranyl linalool (5.3%), benzyl benzoate (4.2%), selin-6-en-4-ol (4.0%), β-caryophyllene (4.0%), germacrene B (3.6%), germacrene D (3.4%), and γ-elemene (3.2%). The essential oil showed no antibacterial activity, marginal antifungal activity against Aspergillus niger (MIC = 313 μg/mL), a moderate activity against A. salina (LC50 = 41 μg/mL), and a good nematicidal activity against C. elegans (LC50 = 37 μg/mL)
    • …
    corecore