25 research outputs found

    Site-specific fluorescence dynamics in an RNA 'thermometer' reveals the role of ribosome binding in its temperature-sensitive switch function

    Get PDF
    RNA thermometers control the translation of several heat shock and virulence genes by their temperature-sensitive structural transitions. Changes in the structure and dynamics of MiniROSE RNA, which regulates translation in the temperature range of 20–45°C, were studied by site specifically replacing seven adenine residues with the fluorescent analog, 2-aminopurine (2-AP), one at a time. Dynamic fluorescence observables of 2-AP-labeled RNAs were compared in their free versus ribosome-bound states for the first time. Noticeably, position dependence of fluorescence observables, which was prominent at 20°C, was persistent even at 45°C, suggesting the persistence of structural integrity up to 45°C. Interestingly, position-dependent dispersion of fluorescence lifetime and quenching constant at 45°C was ablated in ribosome-bound state, when compared to those at 20°C, underscoring loss of structural integrity at 45°C, in ribosome-bound RNA. Significant increase in the value of mean lifetime for 2-AP corresponding to Shine–Dalgarno sequences, when the temperature was raised from 20 to 45°C, to values seen in the presence of urea at 45°C was a strong indicator of melting of the 3D structure of MiniROSE RNA at 45°C, only when it was ribosome bound. Taken all together, we propose a model where we invoke that ribosome binding of the RNA thermometer critically regulates temperature sensing functions in MiniROSE RNA

    Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer.

    Get PDF
    Cancer progression represents an evolutionary process where overall genome level changes reflect system instability and serve as a driving force for evolving new systems. To illustrate this principle it must be demonstrated that karyotypic heterogeneity (population diversity) directly contributes to tumorigenicity. Five well characterized in vitro tumor progression models representing various types of cancers were selected for such an analysis. The tumorigenicity of each model has been linked to different molecular pathways, and there is no common molecular mechanism shared among them. According to our hypothesis that genome level heterogeneity is a key to cancer evolution, we expect to reveal that the common link of tumorigenicity between these diverse models is elevated genome diversity. Spectral karyotyping (SKY) was used to compare the degree of karyotypic heterogeneity displayed in various sublines of these five models. The cell population diversity was determined by scoring type and frequencies of clonal and non-clonal chromosome aberrations (CCAs and NCCAs). The tumorigenicity of these models has been separately analyzed. As expected, the highest level of NCCAs was detected coupled with the strongest tumorigenicity among all models analyzed. The karyotypic heterogeneity of both benign hyperplastic lesions and premalignant dysplastic tissues were further analyzed to support this conclusion. This common link between elevated NCCAs and increased tumorigenicity suggests an evolutionary causative relationship between system instability, population diversity, and cancer evolution. This study reconciles the difference between evolutionary and molecular mechanisms of cancer and suggests that NCCAs can serve as a biomarker to monitor the probability of cancer progression

    The extent of genetic diversity among Vanilla species: comparative results for RAPD and ISSR

    No full text
    Vanilla is a large genus of about 110 species in the orchid family (Orchidaceae), including the species Vanilla planifolia from which commercial vanilla flavoring is derived. Since most species of vanilla are considered rare and endangered there is an urgent need to conserve them through genetic analysis and propagation/conservation studies on this crop. The present study investigated the genetic diversity among nine leafy-and leaf-less Vanilla species employing 30 decamer RAPD primers and 10 ISSR primers. The species under study were diverse and displayed a range of variability (0-66% and 0-81% for RAPD and ISSR, respectively). A total of 154 RAPD polymorphic markers (83.24%, h=0.378) and 93 ISSR polymorphic markers (86.11%, h=0.363) were used to generate a genetic similarity matrix followed by the cluster analysis. Specific groupings were revealed by each cluster analysis with slight variation between two different markers. Among the nine species studied, V. planifolia, Vanilla aphylla and Vanilla tahitensis revealed very low level of variation within their collections, thus indicating a narrow genetic base. The large genetic distance of Vanilla andamanica from other species suggests its different origin. A close genetic affinity was observed between the pairs V. planifolia, V. tahitensis and Vanilla albida, V. aphylla. These are the first comparative results for RAPD and ISSR reporting inter-relationship among nine cultivated, wild and hybrid Vanilla species
    corecore