29 research outputs found

    Advancing urban transitions and transformations research

    Get PDF
    Urban transitions and transformations research fosters a dialogue between sustainability transitions theory an inter- and transdisciplinary research on urban change. As a field, urban transitions and transformations research encompasses plural analytical and conceptual perspectives. In doing so, this field opens up sustainability transitions research to new communities of practice in urban environments, including mayors, transnational municipal networks, and international organizations

    Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response

    Full text link
    Genetic and pharmacological interventions in yeast and mammalian cells have suggested a cross-talk between the actin cytoskeleton and protein synthesis. Regulation of the activity of the translation initiation factor 2 (eIF2) is a paramount mechanism for cells to rapidly adjust the rate of protein synthesis and to trigger reprogramming of gene expression in response to internal and external cues. Here, we show that disruption of F-actin in mammalian cells inhibits translation in a GCN2-dependent manner, correlating with increased levels of uncharged tRNA. GCN2 activation increased phosphorylation of its substrate eIF2a and the induction of the integrated stress response master regulator, ATF4. GCN2 activation by latrunculin-B is dependent on GCN1 and inhibited by IMPACT. Our data suggest that GCN2 occurs in two different complexes, GCN2-eEF1A and GCN2-GCN1. Depolymerization of F-actin shifts GCN2 to favor the complex with GCN1, concomitant with GCN1 being released from its binding to IMPACT, which is sequestered by G-actin. These events might further contribute to GCN2 activation. Our findings indicate that GCN2 is an important sensor of the state of the actin cytoskeleton.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Health Research Council of New Zealand Emerging Researcher grantAuckland Medical Research FoundationMaurice and Phyllis Paykel TrustMassey University Research FundCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Sao Paulo, Dept Microbiol Immunol & Parasitol, Escola Paulista Med, BR-04023062 Sao Paulo, BrazilMassey Univ, Inst Nat & Math Sci, Auckland 0745, New ZealandMax Planck Inst Mol Physiol, Dept Mech Cell Biol, D-44227 Dortmund, GermanyDepartment of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, BrazilFAPESP: 2009/52047-5FAPESP: 2014/23889-6CNPq: 309860/2011-3CNPq: 478903/2012-0CAPES: 2014/17145-4Web of Scienc

    Saccharomyces cerevisiae Rbg1 Protein and Its Binding Partner Gir2 Interact on Polyribosomes with Gcn1â–¿

    Full text link
    Rbg1 is a previously uncharacterized protein of Saccharomyces cerevisiae belonging to the Obg/CgtA subfamily of GTP-binding proteins whose members are involved in ribosome function in both prokaryotes and eukaryotes. We show here that Rbg1 specifically associates with translating ribosomes. In addition, in this study proteins were identified that interact with Rbg1 by yeast two-hybrid screening and include Tma46, Ygr250c, Yap1, and Gir2. Gir2 contains a GI (Gcn2 and Impact) domain similar to that of Gcn2, an essential factor of the general amino acid control pathway required for overcoming amino acid shortage. Interestingly, we found that Gir2, like Gcn2, interacts with Gcn1 through its GI domain, and overexpression of Gir2, under conditions mimicking amino acid starvation, resulted in inhibition of growth that could be reversed by Gcn2 co-overexpression. Moreover, we found that Gir2 also cofractionated with polyribosomes, and this fractionation pattern was partially dependent on the presence of Gcn1. Based on these findings, we conclude that Rbg1 and its interacting partner Gir2 associate with ribosomes, and their possible biological roles are discussed

    Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins

    Full text link
    The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: 1) yeast Hof1p/mammalian PSTPIP1, 2) yeast Rvs167p/mammalian BIN1, 3) yeast eEF1A/eEF1A1 and eEF1A2 and 4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines

    Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals—Illustrated with Four Actin Cytoskeleton Proteins

    Full text link
    The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: 1) yeast Hof1p/mammalian PSTPIP1, 2) yeast Rvs167p/mammalian BIN1, 3) yeast eEF1A/eEF1A1 and eEF1A2 and 4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines
    corecore