25 research outputs found

    H3K9 Demethylases JMJD1A and JMJD1B Control Prospermatogonia to Spermatogonia Transition in Mouse Germline

    Get PDF
    Histone H3 lysine 9 (H3K9) methylation is dynamically regulated by methyltransferases and demethylases. In spermatogenesis, prospermatogonia differentiate into differentiating or undifferentiated spermatogonia after birth. However, the epigenetic regulation of prospermatogonia to spermatogonia transition is largely unknown. We found that perinatal prospermatogonia have extremely low levels of di-methylated H3K9 (H3K9me2) and that H3K9 demethylases, JMJD1A and JMJD1B, catalyze H3K9me2 demethylation in perinatal prospermatogonia. Depletion of JMJD1A and JMJD1B in the embryonic germline resulted in complete loss of male germ cells after puberty, indicating that H3K9me2 demethylation is essential for male germline maintenance. JMJD1A/JMJD1B-depleted germ cells were unable to differentiate into functional spermatogonia. JMJD1 isozymes contributed to activation of several spermatogonial stem cell maintenance genes through H3K9 demethylation during the prospermatogonia to spermatogonia transition, which we propose is key for spermatogonia development. In summary, JMJD1A/JMJD1B-mediated H3K9me2 demethylation promotes prospermatogonia to differentiate into functional spermatogonia by establishing proper gene expression profiles

    PREFRONTAL ACTIVATION DURING EMOTIONAL EXPERIENCE AS MEASURED BY NIRS

    Get PDF
    To investigate brain activation in the prefrontal cortex (PFC) during emotional experiences, we examined blood oxygenation changes of healthy female volunteers by using multi-channel Near Infrared Spectroscopy (NIRS). Results directly confirmed that the PFC was activated during emotional tasks suggesting that the levels of oxy-Hb increased significantly larger in negative periods compared with positive or neutral in the bilateral dorsolateral PFC. There is a possibility that this brain area is associated with the regulation of negative emotion. Our results suggest that it may be possible to evaluate emotional changes using NIRS sensitively

    Hibikino-Musashi@Home 2023 Team Description Paper

    Full text link
    This paper describes an overview of the techniques of Hibikino-Musashi@Home, which intends to participate in the domestic standard platform league. The team has developed a dataset generator for the training of a robot vision system and an open-source development environment running on a human support robot simulator. The robot system comprises self-developed libraries including those for motion synthesis and open-source software works on the robot operating system. The team aims to realize a home service robot that assists humans in a home, and continuously attend the competition to evaluate the developed system. The brain-inspired artificial intelligence system is also proposed for service robots which are expected to work in a real home environment

    Development of a modified prognostic index for patients with aggressive adult T-cell leukemia-lymphoma aged 70 years or younger: possible risk-adapted management strategies including allogeneic transplantation

    Get PDF
    Adult T-cell leukemia-lymphoma is a distinct type of peripheral T-cell lymphoma caused by human T-cell lymphotropic virus type I. Although allogeneic stem cell transplantation after chemotherapy is a recommended treatment option for patients with aggressive adult T-cell leukemia-lymphoma, there is no consensus about indications for allogeneic stem cell transplantation because there is no established risk stratification system for transplant eligible patients. We conducted a nationwide survey of patients with aggressive adult T-cell leukemia-lymphoma in order to construct a new, large database that includes 1,792 patients aged 70 years or younger with aggressive adult T-cell leukemia-lymphoma who were diagnosed between 2000 and 2013 and received intensive first-line chemotherapy. We randomly divided patients into two groups (training and validation sets). Acute type, poor performance status, high soluble interleukin-2 receptor levels (> 5,000 U/mL), high adjusted calcium levels (≥ 12 mg/dL), and high C-reactive protein levels (≥ 2.5 mg/dL) were independent adverse prognostic factors used in the training set. We used these five variables to divide patients into three risk groups. In the validation set, median overall survival for the low-, intermediate-, and high-risk groups was 626 days, 322 days, and 197 days, respectively. In the intermediate- and high-risk groups, transplanted recipients had significantly better overall survival than non-transplanted patients. We developed a promising new risk stratification system to identify patients aged 70 years or younger with aggressive adult T-cell leukemia-lymphoma who may benefit from upfront allogeneic stem cell transplantation. Prospective studies are warranted to confirm the benefit of this treatment strategy

    Safety assessment of bone marrow derived MSC grown in platelet-rich plasma

    Get PDF
    The injection of endothelial progenitor cells and mononuclear cells derived from bone marrow at the ischemic region of peripheral artery disease patients is reported to be effective for therapeutic angiogenesis; however, these cell therapies require large amounts of bone marrow to obtain sufficient numbers of cells. To solve this problem, we attempted to culture bone-marrow-derived mesenchymal stem cells (BM-MSC), which are supposed to secrete several cytokines that promote angiogenesis. We also focused on using platelet-rich plasma (PRP) as a supplement for cell culture instead of fetal bovine serum. Human BM-MSC obtained from healthy volunteers expanded rapidly when cultured with 10% PRP prepared from their own blood. FACS analysis revealed that these cultured human MSC were homogeneous populations, and chromosomal analysis showed a normal karyotype. Moreover, the angiogenetic effect was apparent two weeks after human BM-MSC were injected into the ischemic muscle in SCID mice. Tumor formation was not detected three months after injection into SCID mice either subcutaneously or intramuscularly. To simulate clinical settings, canine BM-MSC were grown with canine PRP and injected into their ischemic muscles. We confirmed that donor cells existed in situ two and six weeks after operation without any side effects. These results suggest that cultured human BM-MSC can be a promising cell source for therapeutic angiogenesis

    Efficient induction of pancreatic alpha cells from human induced pluripotent stem cells by controlling the timing for BMP antagonism and activation of retinoic acid signaling.

    No full text
    Diabetes mellitus is caused by breakdown of blood glucose homeostasis, which is maintained by an exquisite balance between insulin and glucagon produced respectively by pancreatic beta cells and alpha cells. However, little is known about the mechanism of inducing glucagon secretion from human alpha cells. Many methods for generating pancreatic beta cells from human pluripotent stem cells (hPSCs) have been reported, but only two papers have reported generation of pancreatic alpha cells from hPSCs. Because NKX6.1 has been suggested as a very important gene for determining cell fate between pancreatic beta and alpha cells, we searched for the factors affecting expression of NKX6.1 in our beta cell differentiation protocols. We found that BMP antagonism and activation of retinoic acid signaling at stage 2 (from definitive endoderm to primitive gut tube) effectively suppressed NKX6.1 expression at later stages. Using two different hPSCs lines, treatment with BMP signaling inhibitor (LDN193189) and retinoic acid agonist (EC23) at Stage 2 reduced NKX6.1 expression and allowed differentiation of almost all cells into pancreatic alpha cells in vivo after transplantation under a kidney capsule. Our study demonstrated that the cell fate of pancreatic cells can be controlled by adjusting the expression level of NKX6.1 with proper timing of BMP antagonism and activation of retinoic acid signaling during the pancreatic differentiation process. Our method is useful for efficient induction of pancreatic alpha cells from hPSCs

    Induction of functional islet-like cells from human iPS cells by suspension culture

    No full text
    Introduction: To complement islet transplantation for type1 diabetic patients, cell-based therapy using pluripotent stem cells such as ES cells and iPS cells is promising. Many papers have already reported the induction of pancreatic β cells from these cell types, but a suspension culture system has not usually been employed. The aim of this study is to establish a suspension culture method for inducing functional islet-like cells from human iPS cells. Methods: We used 30 ml spinner type culture vessels for human iPS cells throughout the differentiation process. Differentiated cells were analyzed by immunostaining and C-peptide secretion. Cell transplantation experiments were performed with STZ-induced diabetic NOD/SCID mice. Blood human C-peptide and glucagon levels were measured serially in mice, and grafts were analyzed histologically. Results: We obtained spherical pancreatic beta-like cells from human iPS cells and detected verifiable amounts of C-peptide secretion in vitro. We demonstrated reversal of hyperglycemia in diabetic model mice after transplantation of these cells, maintaining non-fasting blood glucose levels along with the human glycemic set point. We confirmed the secretion of human insulin and glucagon dependent on the blood glucose level in vivo. Immunohistological analysis revealed that grafted cells became α, β and δ cells in vivo. Conclusions: These results suggest that differentiated cells derived from human iPS cells grown in suspension culture mature and function like pancreatic islets in vivo. Keywords: iPS cells, Islet, Pancreatic β cel

    Expression of mutant mRNA and protein in pancreatic cells derived from MODY3- iPS cells.

    No full text
    Maturity-onset diabetes of the young (MODY) is a heterozygous monogenic diabetes; more than 14 disease genes have been identified. However, the pathogenesis of MODY is not fully understood because the patients' pancreatic beta cells are inaccessible. To elucidate the pathology of MODY, we established MODY3 patient-derived iPS (MODY3-iPS) cells using non-integrating Sendai virus (SeV) vector and examined the mutant mRNA and protein of HNF1A (Hepatocyte Nuclear factor 1A) after pancreatic lineage differentiation. Our patient had a cytosine insertion in the HNF1A gene (P291fsinsC) causing frameshift and making a premature termination codon (PTC). We confirmed these MODY3-iPS cells possessed the characteristics of pluripotent stem cells. After we differentiated them into pancreatic beta cells, transcripts of HNF1A gene were cloned and sequenced. We found that P291fsinsC mutant transcripts were much less frequent than wild ones, but they increased after adding cycloheximide (CHX) to the medium. These results suggested that mutant mRNA was destroyed by nonsense-mediated mRNA decay (NMD). Moreover, we were not able to detect any band of mutant proteins in pancreatic lineage cells which were differentiated from MODY3-iPSCs by western blot (WB) analysis. A scarcity of the truncated form of mutant protein may indicate that MODY3 might be caused by a haplo-insufficiency effect rather than a dominant negative manner
    corecore