201 research outputs found

    Harvesting the decay energy of 26^{26}Al to drive lightning discharge in protoplanetary discs

    Full text link
    Chondrules in primitive meteorites likely formed by recrystallisation of dust aggregates that were flash-heated to nearly complete melting. Chondrules may represent the building blocks of rocky planetesimals and protoplanets in the inner regions of protoplanetary discs, but the source of ubiquitous thermal processing of their dust aggregate precursors remains elusive. Here we demonstrate that escape of positrons released in the decay of the short-lived radionuclide 26^{26}Al leads to a large-scale charging of dense pebble structures, resulting in neutralisation by lightning discharge and flash-heating of dust and pebbles. This charging mechanism is similar to a nuclear battery where a radioactive source charges a capacitor. We show that the nuclear battery effect operates in circumplanetesimal pebble discs. The extremely high pebble densities in such discs are consistent with conditions during chondrule heating inferred from the high abundance of sodium within chondrules. The sedimented mid-plane layer of the protoplanetary disc may also be prone to charging by the emission of positrons, if the mass density of small dust there is at least an order of magnitude above the gas density. Our results imply that the decay energy of 26^{26}Al can be harvested to drive intense lightning activity in protoplanetary discs. The total energy stored in positron emission is comparable to the energy needed to melt all solids in the protoplanetary disc. The efficiency of transferring the positron energy to the electric field nevertheless depends on the relatively unknown distribution and scale-dependence of pebble density gradients in circumplanetesimal pebble discs and in the protoplanetary disc mid-plane layer.Comment: Submitted to Astronomy & Astrophysics, 22 pages, revised version in response to referee repor

    The fate of planetesimals in turbulent disks with dead zones. II. Limits on the viability of runaway accretion

    Full text link
    A critical phase in the standard model for planet formation is the runaway growth phase. During runaway growth bodies in the 0.1--100 km size range (planetesimals) quickly produce a number of much larger seeds. The runaway growth phase is essential for planet formation as the emergent planetary embryos can accrete the leftover planetesimals at large gravitational focusing factors. However, torques resulting from turbulence-induced density fluctuations may violate the criterion for the onset of runaway growth, which is that the magnitude of the planetesimals' random (eccentric) motions are less than their escape velocity. This condition represents a more stringent constraint than the condition that planetesimals survive their mutual collisions. To investigate the effects of MRI turbulence on the viability of the runaway growth scenario, we apply our semi-analytical recipes of Paper I, which we augment by a coagulation/fragmentation model for the dust component. We find that the surface area-equivalent abundance of 0.1 micron particles is reduced by factors 10^2--10^3, which tends to render the dust irrelevant to the turbulence. We express the turbulent activity in the midplane regions in terms of a size s_run above which planetesimals will experience runaway growth. We find that s_run is mainly determined by the strength of the vertical net field that threads the disks and the disk radius. At disk radii beyond 5 AU, s_run becomes larger than ~100 km and the collision times among these bodies longer than the duration of the nebula phase. Our findings imply that the classical, planetesimal-dominated, model for planet formation is not viable in the outer regions of a turbulent disk.Comment: ApJ accepte
    • …
    corecore