17 research outputs found

    N6-methyladenosine Modification of Hepatitis B Virus RNA in the Coding Region of HBx

    No full text
    N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes

    N6-methyladenosine Modification of Hepatitis B Virus RNA in the Coding Region of <i>HBx</i>

    No full text
    N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes

    Ligand-Selective Potentiation of Rat Mineralocorticoid Receptor Activation Function 1 by a CBP-Containing Histone Acetyltransferase Complex

    No full text
    The rat mineralocorticoid receptor (MR) has two activation functions in distinct regions of the A/B domain, designated activation function 1a (AF-1a; amino acids 1 to 169) and AF-1b (amino acids 451 to 600). Since the p160 family protein TIF2, a known component of the AF-2 coactivator complex, potentiates the transactivation function of AF-1b but not that of AF-1a, it is likely that some other, novel protein complex interacts with the AF-1a region. Therefore, we attempted to identify such coactivator complexes from HeLa nuclear extracts by biochemical purification using a glutathione S-transferase-MR AF-1a fusion protein. Purified AF-1a region-interacting proteins were found to contain RNA helicase A (RHA) and CBP. Further analysis showed that RHA interacted with the AF-1a region directly and then recruited a complex with histone acetyltransferase (HAT) activity that contained CBP. For full-length MR, aldosterone, but not hydrocortisone, was found to induce the binding of RHA/CBP complexes to the AF-1a region, as well as to allow the cooperative potentiation of MR transcriptional activity by RHA and CBP. In addition, a chromatin immunoprecipitation assay showed that aldosterone-bound MR, but not hydrocortisone-bound MR, recruited RHA/CBP complexes to native MR target gene promoters. Our results suggested that an altered conformation of the A/B region induced by aldosterone, but not hydrocortisone, might determine the accessibility of MR AF-1a to RHA/CBP complexes
    corecore