86 research outputs found

    A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System

    Get PDF
    We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of qp=(1.26±0.19)×10−3q_p = (1.26\pm 0.19) \times 10^{-3} to the primary. The mass ratio of the two stars is qs=0.289±0.011q_s = 0.289\pm 0.011, and their projected separation is ss=2.1±0.7 s_s = 2.1\pm 0.7\,AU, while the projected separation of the planet from the primary is sp=2.2±0.8 s_p = 2.2\pm 0.8\,AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of ML1=0.35−0.20+0.30 M⊙M_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot, ML2=0.10−0.06+0.09 M⊙M_{L2} = 0.10^{+0.09}_{-0.06}\,M_\odot, and mp=144−82+126 M⊕m_p = 144^{+126}_{-82}\,M_\oplus, and the KK-band magnitude of the combined brightness of the host stars is KL=19.7−1.0+0.7K_L = 19.7^{+0.7}_{-1.0}. The separation between the lens and source system will be ∌90 \sim 90\,mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations

    A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System

    Get PDF
    We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of q_p = (1.26 ± 0.19) × 10⁻³ to the primary. The mass ratio of the two stars is q_s = 0.289 ± 0.011, and their projected separation is s_s = 2.1 ± 0.7 au, while the projected separation of the planet from the primary is s_p = 2.2 ± 0.8 au. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than the projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of, M_(L1) = 0.35^(+0.30)_(−0.20) M⊙, M_(L2) = 0.10^(+0.09)_(−0.06) M⊙, and m_p = 144^(+126)_(−82) M⊕, and the K-band magnitude of the combined brightness of the host stars is K_L = 19.7^(+0.7)_(−1.0). The separation between the lens and source system will be ~90 mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations

    Candidate Brown-dwarf Microlensing Events with Very Short Timescales and Small Angular Einstein Radii

    Get PDF
    Short-timescale microlensing events are likely to be produced by substellar brown dwarfs (BDs), but it is difficult to securely identify BD lenses based on only event timescales t_E because short-timescale events can also be produced by stellar lenses with high relative lens-source proper motions. In this paper, we report three strong candidate BD-lens events found from the search for lensing events not only with short timescales (t_E â‰Č 6 days) but also with very small angular Einstein radii (Ξ_E â‰Č 0.05 mas) among the events that have been found in the 2016–2019 observing seasons. These events include MOA-2017-BLG-147, MOA-2017-BLG-241, and MOA-2019-BLG-256, in which the first two events are produced by single lenses and the last event is produced by a binary lens. From the Monte Carlo simulations of Galactic events conducted with the combined t_E and Ξ_E constraint, it is estimated that the lens masses of the individual events are 0.051^(+0.100)_(−0.027) M⊙, 0.044^(+0.090)_(−0.023) M⊙, and 0.046^(+0.067)_(−0.023) M⊙/0.038^(+0.056)_(−0.019) M⊙ and the probability of the lens mass smaller than the lower limit of stars is ~80% for all events. We point out that routine lens mass measurements of short-timescale lensing events require survey-mode space-based observations

    MOA-2020-BLG-135Lb: A New Neptune-class Planet for the Extended MOA-II Exoplanet Microlens Statistical Analysis

    Full text link
    We report the light-curve analysis for the event MOA-2020-BLG-135, which leads to the discovery of a new Neptune-class planet, MOA-2020-BLG-135Lb. With a derived mass ratio of q=1.52−0.31+0.39×10−4q=1.52_{-0.31}^{+0.39} \times 10^{-4} and separation s≈1s\approx1, the planet lies exactly at the break and likely peak of the exoplanet mass-ratio function derived by the MOA collaboration (Suzuki et al. 2016). We estimate the properties of the lens system based on a Galactic model and considering two different Bayesian priors: one assuming that all stars have an equal planet-hosting probability and the other that planets are more likely to orbit more massive stars. With a uniform host mass prior, we predict that the lens system is likely to be a planet of mass mplanet=11.3−6.9+19.2M⊕m_\mathrm{planet}=11.3_{-6.9}^{+19.2} M_\oplus and a host star of mass Mhost=0.23−0.14+0.39M⊙M_\mathrm{host}=0.23_{-0.14}^{+0.39} M_\odot, located at a distance DL=7.9−1.0+1.0  kpcD_L=7.9_{-1.0}^{+1.0}\;\mathrm{kpc}. With a prior that holds that planet occurrence scales in proportion to the host star mass, the estimated lens system properties are mplanet=25−15+22M⊕m_\mathrm{planet}=25_{-15}^{+22} M_\oplus, Mhost=0.53−0.32+0.42M⊙M_\mathrm{host}=0.53_{-0.32}^{+0.42} M_\odot, and DL=8.3−1.0+0.9  kpcD_L=8.3_{-1.0}^{+0.9}\; \mathrm{kpc}. This planet qualifies for inclusion in the extended MOA-II exoplanet microlens sample.Comment: 22 pages, 6 figures, 4 tables, submitted to the AAS Journal

    OGLE-2014-BLG-0221Lb: A Jupiter Mass Ratio Companion Orbiting Either a Late-type Star or a Stellar Remnant

    Get PDF
    Kirikawa R., Sumi T., Bennett D.P., et al. OGLE-2014-BLG-0221Lb: A Jupiter Mass Ratio Companion Orbiting Either a Late-type Star or a Stellar Remnant. Astronomical Journal 167, 154 (2024); https://doi.org/10.3847/1538-3881/ad2703.We present the analysis of the microlensing event OGLE-2014-BLG-0221, a planetary candidate event discovered in 2014. The photometric light curve is best described by a binary-lens single-source model. Our light-curve modeling finds two degenerate models, with event timescales of t E ∌ 70 days and ∌110 days. These timescales are relatively long, indicating that the discovered system would possess a substantial mass. The two models are similar in their planetary parameters with a Jupiter mass ratio of q ∌ 10−3 and a separation of s ∌ 1.1. Bayesian inference is used to estimate the physical parameters of the lens, revealing that the shorter timescale model predicts 65% and 25% probabilities of a late-type star and white dwarf host, respectively, while the longer timescale model favors a black hole host with a probability ranging from 60% to 95%, under the assumption that stars and stellar remnants have equal probabilities of hosting companions with planetary mass ratios. If the lens is a remnant, this would be the second planet found by microlensing around a stellar remnant. The current separation between the source and lens stars is 41-139 mas depending on the models. This indicates the event is now ready for high-angular-resolution follow-up observations to rule out either of the models. If precise astrometric measurements are conducted in multiple bands, the centroid shift due to the color difference between the source and lens would be detected in the luminous lens scenario

    KMT-2021-BLG-1077L: The fifth confirmed multiplanetary system detected by microlensing

    Full text link
    The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. We test various models in combination with several interpretations. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ∌1.56×10−3\sim 1.56 \times 10^{-3} and ∌1.75×10−3\sim 1.75 \times 10^{-3}, which correspond to ∌1.6\sim 1.6 and ∌1.8\sim 1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. With the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with a mass of Mh=0.14−0.07+0.19 M⊙M_{\rm h} = 0.14^{+0.19}_{-0.07}~M_\odot, and it hosts two gas giant planets with masses of Mp1=0.22−0.12+0.31 MJM_{\rm p_1}=0.22^{+0.31}_{-0.12}~M_{\rm J} and Mp2=0.25−0.13+0.35 MJM_{\rm p_2}=0.25^{+0.35}_{-0.13}~M_{\rm J}. The planets lie beyond the snow line of the host with projected separations of a⊄,p1=1.26−1.08+1.41 AUa_{\perp, {\rm p}_1}=1.26^{+1.41}_{-1.08}~{\rm AU} and a⊄,p2=0.93−0.80+1.05 AUa_{\perp, {\rm p}_2}=0.93^{+1.05}_{-0.80}~{\rm AU}. The planetary system resides in the Galactic bulge at a distance of DL=8.24−1.16+1.02 kpcD_{\rm L}=8.24^{+1.02}_{-1.16}~{\rm kpc}. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.Comment: 9 pages, 8 figure

    Systematic KMTNet Planetary Anomaly Search. IX. Complete Sample of 2016 Prime-Field Planets

    Full text link
    As a part of the ``Systematic KMTNet Planetary Anomaly Search" series, we report five new planets (namely, OGLE-2016-BLG-1635Lb, MOA-2016-BLG-532Lb, KMT-2016-BLG-0625Lb, OGLE-2016-BLG-1850Lb, and KMT-2016-BLG-1751Lb) and one planet candidate (KMT-2016-BLG-1855), which were found by searching 20162016 KMTNet prime fields. These buriedburied planets show a wide range of masses from Earth--class to Super--Jupiter--class, and are located in both the disk and the bulge. The ultimate goal of this series is to build a complete planet sample. Because our work provides a complementary sample to other planet detection methods, which have different detection sensitivities, our complete sample will help us to obtain a better understanding of planet demographics in our Galaxy.Comment: 38 pages, 17 figures, 12 Tables, submitted to the AAS journa
    • 

    corecore