180 research outputs found

    FORWARD AND FALSE STEP TECHNIQUES USED FOR SPRINT START IN A SIDEWAYS DIRECTION: WHICH IS SUPERIOR?

    Get PDF
    The purpose of this study was to determine which technique is superior to in a standing sprint start in a sideways direction: the false step or forward step technique. Nine males performed 5 m sprints in a rightward direction starting with these two techniques. They took a first step in their right side with their right foot in the forward step trials, whereas they took a first step in their left side with their left foot in the false step trials. No significant differences were found between the two trial conditions in the sprint times for 1 m, 2 m, 3 m and 4 m. These results indicate that the start techniques made no difference in the performance in the sideways direction, although the superiority of the false step technique for the forward sprint start was reported previously. This finding suggests that the superiority of the sprint start techniques is dependent on the sprint direction

    Contribution of two missense mutations (G71R and Y486D) of the bilirubin UDP glycosyltransferase (UGT1A1) gene to phenotypes of Gilbert's syndrome and Crigler–Najjar syndrome type II

    Get PDF
    AbstractIn our mutation analyses of bilirubin UDP glycosyltransferase (UGT1A1) gene, we encountered six patients with Crigler–Najjar syndrome type II who were double homozygotes for G71R and Y486D, a patient with Gilbert's syndrome who was a single homozygote for G71R and six patients with Gilbert's syndrome who were single heterozygote for G71R. To clarify the role of each mutation in the occurrence of the two syndromes, we made four mutant expression models. Relative UGT1A1 activity of a single homozygous model of G71R was 32.2±1.6% of normal, that of a single homozygous model of Y486D was 7.6±0.5%, that of a double homozygous model of G71R and Y486D was 6.2±1.6% and that of a heterozygous model of G71R was 60.2±3.5%. The decreased activities of the single homozygous model of G71R and the double homozygous model were at an appropriate level to be diagnosed as Gilbert's syndrome and CN-II, respectively. The activity of a single heterozygous model of G71R was somewhat high to develop to the phenotype of Gilbert's syndrome, suggesting the presence of additional factors for the etiology of Gilbert's syndrome

    THE RELATIONSHIP BETWEEN TRUNK KINEMATIC VARIABLES AND UNDERWATER UNDULATORY SWIMMING PERFORMANCE IN COMPETITIVE SWIMMERS

    Get PDF
    The purpose of this study was to examine the relationship between selected trunk kinematic variables and undulatory underwater swimming performance in competitive swimmers. Eight male and 2 female swimmers performed 15 m UUS with their maximum efforts. Three-dimensional coordinate of markers attached to bony configurations were corrected during Pearson’s product moment by using the underwater motion capture system. The range of motion and the corresponding angular velocity were computed for lower waist, upper waist and chest. The relationship between horizontal velocity of center of mass and each kinematic variable was then examined. No significant correlations were found between horizontal velocity and each range of motion. The horizontal velocity was significantly correlate with the angular velocity of lower waist and of chest, but not with the corresponding value of upper waist. The current results suggest that the swimmers produce the great horizontal velocity by increase in trunk angular velocities rather than by increase in trunk range of motion

    Identification of a potent immunostimulatory oligodeoxynucleotide from Streptococcus thermophilus lacZ

    Get PDF
    Immunostimulatory sequences of oligodeoxynucleotides (ODNs), such as CpG ODNs, are potent stimulators of innate immunity. Here, we identified a strong immunostimulatory CpG ODN, which we named MsST, from the lac Z gene of Streptococcus (S.) thermophilus ATCC19258, and we evaluated its immune functions. In in vitro studies, MsST had a similar ability as the murine prototype CpG ODN 1555 to induce inflammatory cytokine production and cell proliferation. In mouse splenocytes, MsST increased the number of CD80+CD11c+and CD86+CD11c+ dendritic cells and CD4+CD25+ regulatory T cells. We also analyzed the effects of MsST on the expression of regulatory cytokines by real-time quantitative PCR. MsST was more potent at inducing interleukin-10 expression than the ODN control 1612, indicating that MsST can augment the regulatory T cell response via Toll-like receptor 9, which plays an important role in suppressing T helper type 2 responses. These results suggest that S. thermophilus, whose genes include a strong Immunostimulatory sequence-ODN, is a good candidate for a starter culture to develop new physiologically functional foods and feeds.ArticleANIMAL SCIENCE JOURNAL. 80(5):597-604 (2009)journal articl

    Modulation of porcine intestinal epitheliocytes immunetranscriptome response by Lactobacillus jensenii TL2937

    Get PDF
    In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE cells). Here, transcriptomic studies using PIE cells were performed considering that this information would be valuable for understanding the mechanisms involved in the protective activity of the immunobiotic strain Lactobacillus jensenii TL2937 against intestinal inflammatory damage in pigs. In addition, those studies would provide criteria for selecting biomarkers for the screening of new immunobiotic strains. We performed microarray analysis to investigate the transcriptomic response of PIE cells to the challenge with heat-stable Enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs) and, the changes induced by L. jensenii TL2937 in that response. The approach allowed us to obtain a global overview of the immune genes involved in the response of PIE cells to heat-stable ETEC PAMPs. We observed that L. jensenii TL2937 differently modulated gene expression in ETEC PAMPs-challenged PIE cells. Microarray and RT-PCR analysis indicated that the most remarkable changes in PIE cells transcriptomic profile after heat-stable ETEC PAMPs challenge were observed in chemokines, adhesion molecules, complement and coagulation cascades factors. In addition, an anti-inflammatory effect triggered by TL2937 strain in PIE cells was clearly demonstrated. The decrease in the expression of chemokines (CCL8, CXCL5, CXCL9, CXCL10, and CXCL11), complement (C1R, C1S, C3, and CFB), and coagulation factors (F3) by L. jensenii TL2937 supports our previous reports on the immunoregulatory effect of this strain. These results provided clues for the better understanding of the mechanism underlying host-immunobiotic interaction in the porcine host. The comprehensive transcriptomic profiles of PIE cells provided by our analyses successfully identified a group of genes, which could be used as prospective biomarkers for the screening and evaluation of new anti-inflammatory immunobiotics for the prevention of inflammatory intestinal disorders in pigs.Fil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Albarracín, Leonardo Miguel. Tohoku University; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Sato, Nana. Tohoku University; JapónFil: Kanmani, Paulraj. Tohoku University; JapónFil: Kober, Humayun A.K.M.. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University. Department of Dairy and Poultry Science; BangladeshFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Makino, Seiya. Meiji Co., Ltd. Food Science Research Labs.; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Food Science Research Labs.; JapónFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural and Veterinary Division; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration.

    Get PDF
    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration.福岡歯科大学2016年
    corecore