36,252 research outputs found

    Bounds on Cubic Lorentz-Violating Terms in the Fermionic Dispersion Relation

    Full text link
    We study the recently proposed Lorentz-violating dispersion relation for fermions and show that it leads to two distinct cubic operators in the momentum. We compute the leading order terms that modify the non-relativistic equations of motion and use experimental results for the hyperfine transition in the ground state of the 9Be+{}^9\textrm Be^+ ion to bound the values of the Lorentz-violating parameters η1\eta_1 and η2\eta_2 for neutrons. The resulting bounds depend on the value of the Lorenz-violating background four-vector in the laboratory frame.Comment: Revtex 4, four pages. Version to match the one to appear in Physical Review

    Microwave Heating of Water, Ice and Saline Solution: Molecular Dynamics Study

    Full text link
    In order to study the heating process of water by the microwaves of 2.5-20GHz frequencies, we have performed molecular dynamics simulations by adopting a non-polarized water model that have fixed point charges on rigid-body molecules. All runs are started from the equilibrated states derived from the Ic_{c} ice with given density and temperature. In the presence of microwaves, the molecules of liquid water exhibit rotational motion whose average phase is delayed from the microwave electric field. Microwave energy is transferred to the kinetic and inter-molecular energies of water, where one third of the absorbed microwave energy is stored as the latter energy. The water in ice phase is scarcely heated by microwaves because of the tight hydrogen-bonded network of water molecules. Addition of small amount of salt to pure water substantially increases the heating rate because of the weakening by defects in the water network due to sloshing large-size negative ions.Comment: 21 pages, 13 figure

    Point interactions in one dimension and holonomic quantum fields

    Get PDF
    We introduce and study a family of quantum fields, associated to delta-interactions in one dimension. These fields are analogous to holonomic quantum fields of M. Sato, T. Miwa and M. Jimbo. Corresponding field operators belong to an infinite-dimensional representation of the group SL(2,\Rb) in the Fock space of ordinary harmonic oscillator. We compute form factors of such fields and their correlation functions, which are related to the determinants of Schroedinger operators with a finite number of point interactions. It is also shown that these determinants coincide with tau functions, obtained through the trivialization of the det∗\mathrm{det}^*-bundle over a Grassmannian associated to a family of Schroedinger operators.Comment: 17 page

    Nodal Structure of Superconductors with Time-Reversal Invariance and Z2 Topological Number

    Full text link
    A topological argument is presented for nodal structures of superconducting states with time-reversal invariance. A generic Hamiltonian which describes a quasiparticle in superconducting states with time-reversal invariance is derived, and it is shown that only line nodes are topologically stable in single-band descriptions of superconductivity. Using the time-reversal symmetry, we introduce a real structure and define topological numbers of line nodes. Stability of line nodes is ensured by conservation of the topological numbers. Line nodes in high-Tc materials, the polar state in p-wave paring and mixed singlet-triplet superconducting states are examined in detail.Comment: 11 pages, 8 figure

    Infalling Faint [OII] Emitters in Abell 851. I. Spectroscopic Confirmation of Narrowband-Selected Objects

    Get PDF
    We report on a spectroscopic confirmation of narrowband-selected [OII] emitters in Abell 851 catalogued by Martin et al. (2000). The optical spectra obtained from the Keck I Low Resolution Imaging Spectrometer (LRIS) and Keck II Deep Imaging Multi-Object Spectrograph (DEIMOS) have confirmed [OII]3727 emission in narrowband-selected cluster [OII] candidates at a 85% success rate for faint (i <~ 25) blue (g-i < 1) galaxies. The rate for the successful detection of [OII] emission is a strong function of galaxy color, generally proving the efficacy of narrowband [OII] search supplemented with broadband colors in selecting faint cluster galaxies with recent star formation. Balmer decrement-derived reddening measurements show a high degree of reddening [E(B-V) >~ 0.5] in a significant fraction of this population. Even after correcting for dust extinction, the [OII]/Ha line flux ratio for the high-E(B-V) galaxies remains generally lower by a factor of ~2 than the mean [OII]/Ha ratios reported by the studies of nearby galaxies. The strength of [OII] equivalent width shows a negative trend with galaxy luminosity while the Ha equivalent width does not appear to depend as strongly on luminosity. This in part is due to the high amount of reddening observed in luminous galaxies. Furthermore, emission line ratio diagnostics show that AGN-like galaxies are abundant in the high luminosity end of the cluster [OII]-emitting sample, with only moderately strong [OII] equivalent widths, consistent with a scenario of galaxy evolution connecting AGNs and suppression of star-forming activity in massive galaxies.Comment: 11 pages (LaTeX emulateapj), 8 figures, to appear in ApJ. A version with high resolution figures available from the lead autho

    Seismic anisotropy of Precambrian lithosphere : Insights from Rayleigh wave tomography of the eastern Superior Craton

    Get PDF
    The seismic data used in this study are freely available from the CNDC (Canadian National Data Centre for Earthquake Seismology and Nuclear Explosion Monitoring) and IRIS DMC (Data Management Center) via their data request tools. The Leverhulme Trust (grant RPG-2013-332) and National Science Foundation are acknowledged for financial support. L.P. is supported by Janet Watson Imperial College Department Scholarship and the Romanian Government Research Grant NUCLEU. F.D. is supported by NSERC through the Discovery Grants and Canada Research Chairs program. We also thank two anonymous reviewers and the Associate Editor for insightful comments that helped improve the manuscript.Peer reviewedPublisher PD

    M\"obius and twisted graphene nanoribbons: stability, geometry and electronic properties

    Full text link
    Results of classical force field geometry optimizations for twisted graphene nanoribbons with a number of twists NtN_t varying from 0 to 7 (the case NtN_t=1 corresponds to a half-twist M\"obius nanoribbon) are presented in this work. Their structural stability was investigated using the Brenner reactive force field. The best classical molecular geometries were used as input for semiempirical calculations, from which the electronic properties (energy levels, HOMO, LUMO orbitals) were computed for each structure. CI wavefunctions were also calculated in the complete active space framework taking into account eigenstates from HOMO-4 to LUMO+4, as well as the oscillator strengths corresponding to the first optical transitions in the UV-VIS range. The lowest energy molecules were found less symmetric than initial configurations, and the HOMO-LUMO energy gaps are larger than the value found for the nanographene used to build them due to electronic localization effects created by the twisting. A high number of twists leads to a sharp increase of the HOMO →\to LUMO transition energy. We suggest that some twisted nanoribbons could form crystals stabilized by dipolar interactions
    • 

    corecore