37,479 research outputs found
Recommended from our members
Surface damage resulting from rolling contact operating in magnetic field
This paper describes the effects of magnetic field in rolling contact tests of steel by using a two-disc configuration and the investigation of mechanisms involved.
Two contact conditions, namely pure rolling and rolling with 10% sliding were used together with 0.4 and 1.1 Tesla horizontal static magnetic fields created by permanent magnets. Results of optical and scanning electron microscope observations point out that finer wear particles and smoother worn surfaces are produced in the presence of a magnetic field. It is proposed that finer wear particles result from the movement of subsurface crack initiation towards the surface due to the action of magnetic field
Observations of Oscillating Cavitation on a Flat Plate Hydrofoil
An experimental investigation was made to clarify the characteristics of oscillating cavitation on a flat plate hydrofoil in a water tunnel. Dynamic the behavior of oscillating cavitation is discussed from the unsteady pressure measurements at the upstream of the blade and the visual observations of cavitation phenomena using high-speed video recording. It was found that the mean cavity length characterizes the fundamental characteristics of cavity oscillation. The cavity oscillations are categorized into two types, i.e. the transitional cavity oscillation and the partial cavity oscillation
Anisotropic magnetic fluctuations in the ferromagnetic superconductor UCoGe studied by angle-resolved ^{59}Co NMR
We have carried out direction-dependent ^{59}Co NMR experiments on a single
crystal sample of the ferromagnetic superconductor UCoGe in order to study the
magnetic properties in the normal state. The Knight shift and nuclear
spin-lattice relaxation rate measurements provide microscopic evidence that
both static and dynamic susceptibilities are ferromagnetic with strong Ising
anisotropy. We discuss that superconductivity induced by these magnetic
fluctuations prefers spin-triplet pairing state.Comment: 4 pages, 4 figure
Stoichiometry control of the electronic properties of the LaAlO_3/SrTiO_3 heterointerface
We investigate the effect of the laser parameters of pulsed laser deposition
on the film stoichiometry and electronic properties of LaAlO_3/SrTiO_3 (001)
heterostructures. The La/Al ratio in the LaAlO_3 films was varied over a wide
range from 0.88 to 1.15, and was found to have a strong effect on the interface
conductivity. In particular, the carrier density is modulated over more than
two orders of magnitude. The film lattice expansion, caused by cation
vacancies, is found to be the important functional parameter. These results can
be understood to arise from the variations in the electrostatic boundary
conditions, and their resolution, with stoichiometry.Comment: 4 pages, 3 figures, submitted for publicatio
Spin Susceptibility in the Superconducting state of Ferromagnetic Superconductor UCoGe
In order to determine the superconducting paring state in the ferromagnetic
superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to
the microscopic spin susceptibility, was measured in the superconducting state
under magnetic fields perpendicular to spontaneous magnetization axis:
^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below
a superconducting transition. These behaviors as well as the invariance of the
internal field at the Co site in the superconducting state exclude the
spin-singlet pairing, and can be interpreted with the equal-spin pairing state
with a large exchange field along the c axis, which was studied by Mineev
[Phys. Rev. B 81, 180504 (2010)].Comment: 5 pages, 4 figures, to be appear in PR
- …