54 research outputs found

    Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    Get PDF
    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics

    3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    No full text
    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity

    Sex Steroids Effects on Asthma: A Network Perspective of Immune and Airway Cells

    No full text
    A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the “estrogen paradox” due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as “anti-inflammatory,” serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology

    ORGINAL PAPER<br>Modulation of the tissue defense system by squalene in cyclophosphamide induced toxicity in rats

    No full text
    Introduction: Antineoplastic drug, Cyclophosphamide (CP), is a widely used drug that causes toxicity through its metabolites, phosphoramide mustard and acrolein. Squalene (SQ), an intermediate in the cholesterol metabolism has antioxidant and membrane stabilizing property. In the present study, the protective role of SQ towards the tissue defense system of the liver and kidney in the toxicity induced by CP was assessed. Material and methods: Normal Wistar albino rats were administered CP in a dose of 150 mg/kg b.wt., i.p., twice, for 2 consecutive days to induce toxicity. SQ, in a dose of 0.4 ml/day/rat p.o. was used to treat the toxicity induced by CP. Results: Significantly decreased activities of enzymic antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-s-transferase (GST) and glutathione reductase (GR)], decreased levels of reduced glutathione and increased levels of thiobarbutric acid reactive substance (TBARS) were observed. These pathological alterations were significantly normalized during the treatment of SQ. Conclusions: CP toxicity increased the free radical levels in the tissues and affected the activities of the enzymic antioxidants. Increased levels of TBARS [a measure of lipid peroxidation (LPO)] and decreased levels of GSH (due to utilization for detoxification process) evidenced the damage to these tissues. Protection exerted by SQ could be due to free radical quenching, providing additional alkylation site to CP metabolites and by inducing enzymic antioxidant production in these tissues. In conclusions improved antioxidant defense system in the liver and kidney of the experimental rats confirms the protective role of SQ against CP induced toxicities

    2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management

    No full text
    Major advances in cancer control can be greatly aided by early diagnosis and effective treatment in its pre-invasive state. Lung cancer (small cell and non-small cell) is a leading cause of cancer-related deaths among both men and women around the world. A lot of research attention has been directed toward diagnosing and treating lung cancer. A common method of lung cancer treatment is based on COX-2 (cyclooxygenase-2) inhibitors. This is because COX-2 is commonly overexpressed in lung cancer and also the abundance of its enzymatic product prostaglandin E2 (PGE2). Instead of using traditional COX-2 inhibitors to treat lung cancer, here, we introduce a new anti-cancer strategy recently developed for lung cancer treatment. It adopts more abundant omega-6 (ω-6) fatty acids such as dihomo-γ-linolenic acid (DGLA) in the daily diet and the commonly high levels of COX-2 expressed in lung cancer to promote the formation of 8-hydroxyoctanoic acid (8-HOA) through a new delta-5-desaturase (D5Di) inhibitor. The D5Di does not only limit the metabolic product, PGE2, but also promote the COX-2 catalyzed DGLA peroxidation to form 8-HOA, a novel anti-cancer free radical byproduct. Therefore, the measurement of the PGE2 and 8-HOA levels in cancer cells can be an effective method to treat lung cancer by providing in-time guidance. In this paper, we mainly report on a novel sensor, which is based on a newly developed functionalized nanomaterial, 2-dimensional nanosheets, or Ti3C2 MXene. The preliminary results have proven to sensitively, selectively, precisely, and effectively detect PGE2 and 8-HOA in A549 lung cancer cells. The capability of the sensor to detect trace level 8-HOA in A549 has been verified in comparison with the traditional gas chromatography–mass spectrometry (GC–MS) method. The sensing principle could be due to the unique structure and material property of Ti3C2 MXene: a multilayered structure and extremely large surface area, metallic conductivity, and ease and versatility in surface modification. All these make the Ti3C2 MXene-based sensor selectively adsorb 8-HOA molecules through effective charge transfer and lead to a measurable change in the conductivity of the material with a high signal-to-noise ratio and excellent sensitivity

    Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    No full text
    Aims: Cigarette smoke (CS) in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective) bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE) on 17β-estradiol (E2) signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM) obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i) responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1) phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS
    • …
    corecore