27 research outputs found

    The trend of disruption in the functional brain network topology of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study used resting state fMRI data to analyze the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression. There were network characteristics that have changed non-linearly regarding the disease progression, especially at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, the methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process

    Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is defined by amyloid (A) and tau (T) pathologies, with T better correlated to neurodegeneration (N). However, T and N have complex regional relationships in part related to non-AD factors that influence N. With machine learning, we assessed heterogeneity in 18F-flortaucipir vs. 18F-fluorodeoxyglucose positron emission tomography as markers of T and neuronal hypometabolism (NM) in 289 symptomatic patients from the Alzheimer’s Disease Neuroimaging Initiative. We identified six T/NM clusters with differing limbic and cortical patterns. The canonical group was defined as the T/NM pattern with lowest regression residuals. Groups resilient to T had less hypometabolism than expected relative to T and displayed better cognition than the canonical group. Groups susceptible to T had more hypometabolism than expected given T and exhibited worse cognitive decline, with imaging and clinical measures concordant with non-AD copathologies. Together, T/NM mismatch reveals distinct imaging signatures with pathobiological and prognostic implications for AD

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration

    No full text
    Background: The Apolipoprotein E ϵ4 allele (i.e. ApoE4) is the strongest genetic risk factor for sporadic Alzheimer\u27s disease (AD). TREM2 (i.e. Triggering receptor expressed on myeloid cells 2) is a microglial transmembrane protein brain that plays a central role in microglia activation in response to AD brain pathologies. Whether higher TREM2-related microglia activity modulates the risk to develop clinical AD is an open question. Thus, the aim of the current study was to assess whether higher sTREM2 attenuates the effects of ApoE4-effects on future cognitive decline and neurodegeneration. Methods: We included 708 subjects ranging from cognitively normal (CN, n = 221) to mild cognitive impairment (MCI, n = 414) and AD dementia (n = 73) from the Alzheimer\u27s disease Neuroimaging Initiative. We used linear regression to test the interaction between ApoE4-carriage by CSF-assessed sTREM2 levels as a predictor of longitudinally assessed cognitive decline and MRI-assessed changes in hippocampal volume changes (mean follow-up of 4 years, range of 1.7-7 years). Results: Across the entire sample, we found that higher CSF sTREM2 at baseline was associated with attenuated effects of ApoE4-carriage (i.e. sTREM2 x ApoE4 interaction) on longitudinal global cognitive (p = 0.001, Cohen\u27s f 2 = 0.137) and memory decline (p = 0.006, Cohen\u27s f 2 = 0.104) as well as longitudinally assessed hippocampal atrophy (p = 0.046, Cohen\u27s f 2 = 0.089), independent of CSF markers of primary AD pathology (i.e. Aβ1-42, p-tau181). While overall effects of sTREM2 were small, exploratory subanalyses stratified by diagnostic groups showed that beneficial effects of sTREM2 were pronounced in the MCI group. Conclusion: Our results suggest that a higher CSF sTREM2 levels are associated with attenuated ApoE4-related risk for future cognitive decline and AD-typical neurodegeneration. These findings provide further evidence that TREM2 may be protective against the development of AD

    A Novel Joint Brain Network Analysis Using Longitudinal Alzheimer’s Disease Data

    No full text
    © 2019, The Author(s). There is well-documented evidence of brain network differences between individuals with Alzheimer’s disease (AD) and healthy controls (HC). To date, imaging studies investigating brain networks in these populations have typically been cross-sectional, and the reproducibility of such findings is somewhat unclear. In a novel study, we use the longitudinal ADNI data on the whole brain to jointly compute the brain network at baseline and one-year using a state of the art approach that pools information across both time points to yield distinct visit-specific networks for the AD and HC cohorts, resulting in more accurate inferences. We perform a multiscale comparison of the AD and HC networks in terms of global network metrics as well as at the more granular level of resting state networks defined under a whole brain parcellation. Our analysis illustrates a decrease in small-worldedness in the AD group at both the time points and also identifies more local network features and hub nodes that are disrupted due to the progression of AD. We also obtain high reproducibility of the HC network across visits. On the other hand, a separate estimation of the networks at each visit using standard graphical approaches reveals fewer meaningful differences and lower reproducibility

    Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration

    No full text
    Background: The Apolipoprotein E ϵ4 allele (i.e. ApoE4) is the strongest genetic risk factor for sporadic Alzheimer\u27s disease (AD). TREM2 (i.e. Triggering receptor expressed on myeloid cells 2) is a microglial transmembrane protein brain that plays a central role in microglia activation in response to AD brain pathologies. Whether higher TREM2-related microglia activity modulates the risk to develop clinical AD is an open question. Thus, the aim of the current study was to assess whether higher sTREM2 attenuates the effects of ApoE4-effects on future cognitive decline and neurodegeneration. Methods: We included 708 subjects ranging from cognitively normal (CN, n = 221) to mild cognitive impairment (MCI, n = 414) and AD dementia (n = 73) from the Alzheimer\u27s disease Neuroimaging Initiative. We used linear regression to test the interaction between ApoE4-carriage by CSF-assessed sTREM2 levels as a predictor of longitudinally assessed cognitive decline and MRI-assessed changes in hippocampal volume changes (mean follow-up of 4 years, range of 1.7-7 years). Results: Across the entire sample, we found that higher CSF sTREM2 at baseline was associated with attenuated effects of ApoE4-carriage (i.e. sTREM2 x ApoE4 interaction) on longitudinal global cognitive (p = 0.001, Cohen\u27s f 2 = 0.137) and memory decline (p = 0.006, Cohen\u27s f 2 = 0.104) as well as longitudinally assessed hippocampal atrophy (p = 0.046, Cohen\u27s f 2 = 0.089), independent of CSF markers of primary AD pathology (i.e. Aβ1-42, p-tau181). While overall effects of sTREM2 were small, exploratory subanalyses stratified by diagnostic groups showed that beneficial effects of sTREM2 were pronounced in the MCI group. Conclusion: Our results suggest that a higher CSF sTREM2 levels are associated with attenuated ApoE4-related risk for future cognitive decline and AD-typical neurodegeneration. These findings provide further evidence that TREM2 may be protective against the development of AD

    KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer’s disease

    No full text
    Klotho-VS heterozygosity (KL-VShet) is associated with reduced risk of Alzheimer’s disease (AD). However, whether KL-VShet is associated with lower levels of pathologic tau, i.e., the key AD pathology driving neurodegeneration and cognitive decline, is unknown. Here, we assessed the interaction between KL-VShet and levels of beta-amyloid, a key driver of tau pathology, on the levels of PET-assessed neurofibrillary tau in 551 controls and patients across the AD continuum. KL-VShet showed lower cross-sectional and longitudinal increase in tau-PET per unit increase in amyloid-PET when compared to that of non-carriers. This association of KL-VShet on tau-PET was stronger in Klotho mRNA-expressing brain regions mapped onto a gene expression atlas. KL-VShet was related to better memory functions in amyloid-positive participants and this association was mediated by lower tau-PET. Amyloid-PET levels did not differ between KL-VShet carriers versus non-carriers. Together, our findings provide evidence to suggest a protective role of KL-VShet against amyloid-related tau pathology and tau-related memory impairments in elderly humans at risk of AD dementia
    corecore