72 research outputs found
Exploring the Potential of Microgrids in the Effective Utilisation of Renewable Energy : A Comprehensive Analysis of Evolving Themes and Future Priorities Using Main Path Analysis
Microgrids are energy systems that can operate independently or in conjunction with the main electricity grid. Their purpose is to link different energy sources, enhance customer participation in energy markets, and improve energy system efficiency and flexibility. However, regulatory, technical, and financial obstacles hinder their deployment. To comprehend the current state of the field, this study utilized citation network analysis (CNA) methodology to examine over 1500 scholarly publications on microgrid research and development (R&D). The study employed modularity-based clustering analysis, which identified seven distinct research clusters, each related to a specific area of study. Cluster 1, focused on control strategies for microgrids, had the highest proportion of publications (23%) and the maximum citation link count (151), while Cluster 4, which examined microgrid stability, had the lowest proportion of papers (10%). On average, each publication within each cluster had four citation links. The citation network of microgrid research was partitioned using cluster analysis, which aided in identifying the main evolutionary paths of each subfield. This allowed for the precise tracing of their evolution, ultimately pinpointing emerging fronts and challenges. The identification of key pathways led to the discovery of significant studies and emerging patterns, highlighting research priorities in the field of microgrids. The study also revealed several research gaps and concerns, such as the need for further investigation into technical and economic feasibility, legislation, and standardization of microgrid technology. Overall, this study provides a comprehensive understanding of the evolution of microgrid research and identifies potential directions for future research.publishedVersio
Global diversity and antimicrobial resistance of typhoid fever pathogens : insights from a meta-analysis of 13,000 Salmonella Typhi genomes
DATA AVAILABILITY : All data analysed during this study are publicly accessible. Raw Illumina sequence reads have been submitted to the European Nucleotide Archive (ENA), and individual sequence accession numbers are listed in Supplementary file 2. The full set of n=13,000 genome assemblies generated for this study are available for download from FigShare: https://doi.org/10.26180/21431883. All assemblies of suitable quality (n=12,849) are included as public data in the online platform Pathogenwatch (https://pathogen.watch). The data are organised into collections, which each comprise a neighbour-joining phylogeny annotated with metadata, genotype, AMR determinants, and a linked map. Each contributing study has its own collection, browsable at https://pathogen.watch/collections/all?organismId= 90370. In addition, we have provided three large collections, each representing roughly a third of the total dataset presented in this study: Typhi 4.3.1.1 (https://pathogen.watch/collection/ 2b7mp173dd57-clade-4311), Typhi lineage 4 (excluding 4.3.1.1) (https://pathogen.watch/collection/ wgn6bp1c8bh6-clade-4-excluding-4311), and Typhi lineages 0-3 (https://pathogen.watch/collection/ 9o4bpn0418n3-clades-0-1-2-and-3). In addition, users can browse the full set of Typhi genomes in Pathogenwatch and select subsets of interest (e.g. by country, genotype, and/or resistance) to generate a collection including neighbour-joining tree for interactive exploration.SUPPLEMENTARY FILES : Available at https://elifesciences.org/articles/85867/figures#content. SUPPLEMENTARY FILE 1. Details of local ethical approvals provided for studies that were unpublished at the time of contributing data to this consortium project. Most data are now published, and the citations for the original studies are provided here. National surveillance programs in Chile (Maes et al., 2022), Colombia (Guevara et al., 2021), France, New Zealand, and Nigeria (Ikhimiukor et al., 2022b) were exempt from local ethical approvals as these countries allow sharing of non-identifiable pathogen sequence data for surveillance purposes. The US CDC Internal Review Board confirmed their approval was not required for use in this project (#NCEZID-ARLT- 10/ 20/21-fa687). SUPPLEMENTARY FILE 2. Line list of 13,000 genomes included in the study. SUPPLEMENTARY FILE 3. Source information recorded for genomes included in the study. ^Indicates cases included in the definition of ‘assumed acute illness’. SUPPLEMENTARY FILE 4. Summary of genomes by country. SUPPLEMENTARY FILE 5. Genotype frequencies per region (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 6. Genotype frequencies per country (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 7. Antimicrobial resistance (AMR) frequencies per region (N, %, 95% confidence interval; aggregated 2010–2020). SUPPLEMENTARY FILE 8. Antimicrobial resistance (AMR) frequencies per country (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 9. Laboratory code master list. Three letter laboratory codes assigned by the consortium.BACKGROUND : The Global Typhoid Genomics Consortium was established to bring together the
typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi)
genomic data to inform public health action. This analysis, which marks 22 years since the publication
of the first Typhi genome, represents the largest Typhi genome sequence collection to date
(n=13,000).
METHODS : This is a meta-analysis
of global genotype and antimicrobial resistance (AMR) determinants
extracted from previously sequenced genome data and analysed using consistent methods
implemented in open analysis platforms GenoTyphi and Pathogenwatch.
RESULTS : Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58)
has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate
and have independently evolved AMR. Data gaps remain in many parts of the world, and we
show the potential of travel-associated
sequences to provide informal ‘sentinel’ surveillance for
such locations. The data indicate that ciprofloxacin non-susceptibility
(>1 resistance determinant) is
widespread across geographies and genotypes, with high-level
ciprofloxacin resistance (≥3 determinants)
reaching 20% prevalence in South Asia. Extensively drug-resistant
(XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone
resistance has emerged in eight non-XDR
genotypes, including a ciprofloxacin-resistant
lineage
(4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South
Asia, including in two common ciprofloxacin-resistant
genotypes.
CONCLUSIONS : The consortium’s aim is to encourage continued data sharing and collaboration to
monitor the emergence and global spread of AMR Typhi, and to inform decision-making
around the
introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies.Fellowships from the European Union (funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council.https://elifesciences.org/am2024Medical MicrobiologySDG-03:Good heatlh and well-bein
The Invisible Culture of Discrimination
A recent ITV news item featured Radhakrishna Shanbag, a senior surgeon with over 20 years of service in the NHS, being asked, ‘Please can I have a white doctor for my operation?’, by one his patient’s 1 . Any form of racism is both painful and upsetting, however to a dedicated professional it throws a much greater challenge. To remain professional, composed and objective in the face of adversity, is ingrained in medical training. One is also expected to provide the very best of care ‘free from all bias’ at all times to all comers. As in this case, professionals have no choice but to swallow the insults and provide alternatives to get the best possible outcome, suppressing the impact on self-worth and devastating emotional trauma.</jats:p
REVIEW OF WπGR CLOSED SETS IN TOPOLOGICAL SPACES
In this paper we introduce a new class of sets called weakly π generalized regular closed (wπgr closed) sets. A subset A of X is called wπgr closed set if cl( int A) ⊆U whenever A⊆U and U is πgr open in X. The complement of wπgr-closed set is called wπgr-open set in X. We denote the family of all wπgr closed sets in X by wπGRC(X) and wπgr open sets in X by wπGRO(X)
- …
