25 research outputs found
A Jump-Start for Planarian Head Regeneration
Planaria are simple flatworms with an extraordinary ability to regenerate missing body parts. This makes them a unique model system for the study of regeneration. Extending an earlier chemical screen, Beane etĀ al. (2011) now reveal a role for H+/K+ ATPase and membrane depolarization in anterior regeneration in planaria
Inhibition of Morphogenetic Movement duringXenopusGastrulation by Injected Sulfatase: Implications for Anteroposterior and Dorsoventral Axis Formation
AbstractIn order to explore the role of morphogenetic movement in the establishment of anteroposterior and dorsoventral axes, we sought to identify novelin vivoinhibitors of gastrulation movements inXenopus laevis.Injection of hydrolytic sulfatase into the blastocoels of gastrula stage embryos resulted in severe anteroposterior truncation, without a corresponding truncation of the dorsoventral axis. Confocal microscopy of whole embryos revealed that gastrulation movements are severely disrupted by sulfatase; in addition, sulfatase dramatically inhibited chordomesodermal cell elongation and convergent extension movements in planar dorsal marginal zone explants. The phenotype of anteroposterior reduction elicited by sulfatase is distinctly different from commonly generated dorsoanterior phenotypes (e.g., ultraviolet irradiation of the vegetal cortex prior to cortical rotation or suramin injection), and the two varieties of phenotype appear to result from inhibition of distinct, separable components of the axis-generating machinery
Distribution of Polymorphic and Non-Polymorphic Microsatellite Repeats in Xenopus tropicalis
The results of our bioinformatics analysis have found over 91,000 di-, tri-, and tetranucleotide microsatellites in our survey of 25% of the X. tropicalis genome, suggesting there may be over 360,000 within the entire genome. Within the X. tropicalis genome, dinucleotide (78.7%) microsatellites vastly out numbered tri- and tetranucleotide microsatellites. Similarly, AT-rich repeats are overwhelmingly dominant. The four AT-only motifs (AT, AAT, AAAT, and AATT) account for 51,858 out of 91,304 microsatellites found. Individually, AT microsatellites were the most common repeat found, representing over half of all di-, tri-, and tetranucleotide microsatellites. This contrasts with data from other studies, which show that AC is the most frequent microsatellite in vertebrate genomes (Toth et al. 2000). In addition, we have determined the rate of polymorphism for 5,128 non-redundant microsatellites, embedded in unique sequences. Interestingly, this subgroup of microsatellites was determined to have significantly longer repeats than genomic microsatellites as a whole. In addition, microsatellite loci with tandem repeat lengths more than 30 bp exhibited a significantly higher degree of polymorphism than other loci. Pairwise comparisons show that tetranucleotide microsatellites have the highest polymorphic rates. In addition, AAT and ATC showed significant higher polymorphism than other trinucleotide microsatellites, while AGAT and AAAG were significantly more polymorphic than other tetranucleotide microsatellites
Remobilization of Tol2 transposons in Xenopus tropicalis
<p>Abstract</p> <p>Background</p> <p>The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring <it>Tol2 </it>element from <it>Oryzias latipes </it>efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, <it>Xenopus tropicalis. Tol2 </it>transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency.</p> <p>Results</p> <p>To test whether <it>Tol2 </it>transposons integrated in the <it>Xenopus tropicalis </it>genome are substrates for remobilization, we injected <it>in vitro </it>transcribed <it>Tol2 </it>mRNA into one-cell embryos harbouring a single copy of a <it>Tol2 </it>transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single <it>Tol2 </it>transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the <it>Tol2 </it>transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis.</p> <p>Conclusions</p> <p>In this study, we demonstrate that single copy <it>Tol2 </it>transposons integrated into the <it>Xenopus tropicalis </it>genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.</p
Remobilization of Sleeping Beauty transposons in the germline of Xenopus tropicalis
<p>Abstract</p> <p>Background</p> <p>The <it>Sleeping Beauty </it>(<it>SB</it>) transposon system has been used for germline transgenesis of the diploid frog, <it>Xenopus tropicalis</it>. Injecting one-cell embryos with plasmid DNA harboring an <it>SB </it>transposon substrate together with mRNA encoding the <it>SB </it>transposase enzyme resulted in non-canonical integration of small-order concatemers of the transposon. Here, we demonstrate that <it>SB </it>transposons stably integrated into the frog genome are effective substrates for remobilization.</p> <p>Results</p> <p>Transgenic frogs that express the <it>SB</it>10 transposase were bred with <it>SB </it>transposon-harboring animals to yield double-transgenic 'hopper' frogs. Remobilization events were observed in the progeny of the hopper frogs and were verified by Southern blot analysis and cloning of the novel integrations sites. Unlike the co-injection method used to generate founder lines, transgenic remobilization resulted in canonical transposition of the <it>SB </it>transposons. The remobilized <it>SB </it>transposons frequently integrated near the site of the donor locus; approximately 80% re-integrated with 3 Mb of the donor locus, a phenomenon known as 'local hopping'.</p> <p>Conclusions</p> <p>In this study, we demonstrate that <it>SB </it>transposons integrated into the <it>X. tropicalis </it>genome are effective substrates for excision and re-integration, and that the remobilized transposons are transmitted through the germline. This is an important step in the development of large-scale transposon-mediated gene- and enhancer-trap strategies in this highly tractable developmental model system.</p
Distribution of Polymorphic and Non-Polymorphic Microsatellite Repeats in
The results of our bioinformatics analysis have found over 91,000 di-, tri-, and tetranucleotide microsatellites in our survey of 25% of the X. tropicalis genome, suggesting there may be over 360,000 within the entire genome. Within the X. tropicalis genome, dinucleotide (78.7%) microsatellites vastly out numbered tri- and tetranucleotide microsatellites. Similarly, AT-rich repeats are overwhelmingly dominant. The four AT-only motifs (AT, AAT, AAAT, and AATT) account for 51,858 out of 91,304 microsatellites found. Individually, AT microsatellites were the most common repeat found, representing over half of all di-, tri-, and tetranucleotide microsatellites. This contrasts with data from other studies, which show that AC is the most frequent microsatellite in vertebrate genomes (Toth et al. 2000). In addition, we have determined the rate of polymorphism for 5,128 non-redundant microsatellites, embedded in unique sequences. Interestingly, this subgroup of microsatellites was determined to have significantly longer repeats than genomic microsatellites as a whole. In addition, microsatellite loci with tandem repeat lengths more than 30 bp exhibited a significantly higher degree of polymorphism than other loci. Pairwise comparisons show that tetranucleotide microsatellites have the highest polymorphic rates. In addition, AAT and ATC showed significant higher polymorphism than other trinucleotide microsatellites, while AGAT and AAAG were significantly more polymorphic than other tetranucleotide microsatellites
Data on microRNAs and microRNA-targeted mRNAs in Xenopus ectoderm
Small RNAs from early neural (i.e., Noggin-expressing, or NOG) and epidermal (expressing a constitutively active BMP4 receptor, CABR) ectoderm in Xenopus laevis were sequenced to identify microRNAs (miRs) expressed in each tissue. Argonaute-associated mRNAs were isolated and sequenced to identify genes that are regulated by microRNAs in these tissues. Interactions between these ectodermal miRs and selected miR-regulated mRNAs were predicted using the PITA algorithm; PITA predictions for over 600 mRNAs are presented. All sequencing data are available at NCBI (NCBI Bioproject Accession number: PRJNA325834). This article accompanies the manuscript āMicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectodermā (V.V. Shah, B. Soibam, R.A. Ritter, A. Benham, J. Oomen, A.K. Sater, 2016) [1]