18 research outputs found

    Cysteinyl leukotriene receptor 1 promotes 5-fluorouracil resistance and resistance-derived stemness in colon cancer cells

    No full text
    Colon cancer is a therapy-resistant cancer with a low 5-year survival frequency. The drug 5-fluorouracil (5-FU) has been used as a first-line therapy in metastatic colon cancer in combination with leucovorin or oxaliplatin with a >40% resistance rate. High CysLT1R expression in tumors is associated with poor survival of colon cancer patients. We sought to examine the role of CysLT1R in 5-FU resistance and established 5-FU-resistant (5-FU-R) colon cancer cells. These 5-FU-R-cells expressed increased levels of CysLT1R and showed increased survival and migration compared to nonresistant cells. Increases in thymidylate synthase and active β-catenin were also observed in the 5-FU-R-cells. LTD4/CysLT1R signaling was further increased and abolished after CYSLTR1 CRISPR-Cas9-knockdown and reduced in CysLT1R-doxycycline-knockdown experiments and CysLT1R-antagonist montelukast/5-FU-treated cells. Montelukast and 5-FU resulted in synergistic effects by reducing HT-29 cell and 5-FU-R-HT-29 cell migration and zebrafish xenograft metastasis. An increase in the stem cell markers in 5-FU-R-cells and 5-FU-R-cell-derived colonospheres and in CysLT1R-Dox-knockdown cells increased colonosphere formation and stem cell markers was noticed after 5-FU treatment. IL-4-mediated stemness in both HT-29-colonospheres and 5-FU-R-cell derived colonospheres was abolished by montelukast or montelukast + 5-FU-treatment. Targeting CysLT1R signaling by montelukast might reverse drug resistance and decrease resistance-derived stemness in colon cancer patients

    DNA Methylation and Gene Expression of the Cysteinyl Leukotriene Receptors as a Prognostic and Metastatic Factor for Colorectal Cancer Patients

    No full text
    Colorectal cancer (CRC), one of the leading causes of cancer-related deaths in the western world, is the third most common cancer for both men and women. As a heterogeneous disease, colon cancer (CC) is caused by both genetic and epigenetic changes. The prognosis for CRC is affected by a variety of features, including late diagnosis, lymph node and distant metastasis. The cysteinyl leukotrienes (CysLT), as leukotriene D4 and C4 (LTD4 and LTC4), are synthesized from arachidonic acid via the 5-lipoxygenase pathway, and play an important role in several types of diseases such as inflammation and cancer. Their effects are mediated via the two main G-protein-coupled receptors, CysLT1R and CysLT2R. Multiple studies from our group observed a significant increase in CysLT1R expression in the poor prognosis group, whereas CysLT2R expression was higher in the good prognosis group of CRC patients. Here, we systematically explored and established the role of the CysLTRs, cysteinyl leukotriene receptor 1(CYSLTR1) and cysteinyl leukotriene receptor 2 (CYSLTR2) gene expression and methylation in the progression and metastasis of CRC using three unique in silico cohorts and one clinical CRC cohort. Primary tumor tissues showed significant CYSLTR1 upregulation compared with matched normal tissues, whereas it was the opposite for the CYSLTR2. Univariate Cox proportional-hazards (CoxPH) analysis yielded a high expression of CYSLTR1 and accurately predicted high-risk patients in terms of overall survival (OS; hazard ratio (HR) = 1.87, p = 0.03) and disease-free survival [DFS] Hazard ratio [HR] = 1.54, p = 0.05). Hypomethylation of the CYSLTR1 gene and hypermethylation of the CYSLTR2 gene were found in CRC patients. The M values of the CpG probes for CYSLTR1 are significantly lower in primary tumor and metastasis samples than in matched normal samples, but those for CYSLTR2 are significantly higher. The differentially upregulated genes between tumor and metastatic samples were uniformly expressed in the high-CYSLTR1 group. Two epithelial–mesenchymal transition (EMT) markers, E-cadherin (CDH1) and vimentin (VIM) were significantly downregulated and upregulated in the high-CYSLTR1 group, respectively, but the result was opposite to that of CYSLTR2 expression in CRC. CDH1 expression was high in patients with less methylated CYSLTR1 but low in those with more methylated CYSLTR2. The EMT-associated observations were also validated in CC SW620 cell-derived colonospheres, which showed decreased E-cadherin expression in the LTD4 stimulated cells, but not in the CysLT1R knockdown SW620 cells. The methylation profiles of the CpG probes for CysLTRs significantly predicted lymph node (area under the curve [AUC] = 0.76, p < 0.0001) and distant (AUC = 0.83, p < 0.0001) metastasis. Intriguingly, the CpG probes cg26848126 (HR = 1.51, p = 0.03) for CYSLTR1, and cg16299590 (HR = 2.14, p = 0.03) for CYSLTR2 significantly predicted poor prognosis in terms of OS, whereas the CpG probe cg16886259 for CYSLTR2 significantly predicts a poor prognosis group in terms of DFS (HR = 2.88, p = 0.03). The CYSLTR1 and CYSLTR2 gene expression and methylation results were successfully validated in a CC patient cohort. In this study, we have demonstrated that CysLTRs’ methylation and gene expression profile are associated with the progression, prognosis, and metastasis of CRC, which might be used for the assessment of high-risk CRC patients after validating the result in a larger CRC cohort

    The tumor promoter cysteinyl leukotriene receptor 1 regulates PD-L1 expression in colon cancer cells via the Wnt/β-catenin signaling axis

    No full text
    Immunotherapy targeting programmed death-ligand 1 (PD-L1) or PD-1 in solid tumors has been shown to be clinically beneficial. However, in colorectal cancer (CRC), only a subset of patients benefit from PD-1/PD-L1 treatment. Previously, we showed that high cysteinyl leukotriene receptor 1 (CysLT1R) levels are associated with poor prognosis in CRC patients. Recently, we have revealed the role of the tumor promoter CysLT1R in drug resistance and stemness in colon cancer (CC) cells. Here, we show the role of the CysLT1R/Wnt/β-catenin signaling axis in the regulation of PD-L1 using both in vitro and in vivo preclinical model systems. Interestingly, we found that both endogenous and IFNγ-induced PD-L1 expression in CC cells is mediated through upregulation of CysLT1R, which enhances Wnt/β-catenin signaling. Therapeutic targeting of CysLT1R with its antagonist montelukast (Mo), as well as CRISPR/Cas9-mediated or doxycycline-inducible functional absence of CysLT1R, negatively regulated PD-L1 expression in CC cells. Interestingly, an anti-PD-L1 neutralizing antibody exhibited stronger effects together with the CysLT1R antagonist in cells (Apcmut or CTNNB1mut) with either endogenous or IFNγ-induced PD-L1 expression. Additionally, mice treated with Mo showed depletion of PD-L1 mRNA and protein. Moreover, in CC cells with combined treatment of a Wnt inhibitor and an anti-PD-L1 antibody was effective only in β-catenin-dependent (APCmut) context. Finally, analysis of public dataset showed positive correlations between the PD-L1 and CysLT1R mRNA levels. These results elucidate a previously underappreciated CysLT1R/Wnt/β-catenin signaling pathway in the context of PD-L1 inhibition in CC, which might be considered for improving the efficacy of anti-PD-L1 therapy in CC patients

    DNA Methylation and Gene Expression of the Cysteinyl Leukotriene Receptors as a Prognostic and Metastatic Factor for Colorectal Cancer Patients

    No full text
    Colorectal cancer (CRC), one of the leading causes of cancer-related deaths in the western world, is the third most common cancer for both men and women. As a heterogeneous disease, colon cancer (CC) is caused by both genetic and epigenetic changes. The prognosis for CRC is affected by a variety of features, including late diagnosis, lymph node and distant metastasis. The cysteinyl leukotrienes (CysLT), as leukotriene D4 and C4 (LTD4 and LTC4), are synthesized from arachidonic acid via the 5-lipoxygenase pathway, and play an important role in several types of diseases such as inflammation and cancer. Their effects are mediated via the two main G-protein-coupled receptors, CysLT1R and CysLT2R. Multiple studies from our group observed a significant increase in CysLT1R expression in the poor prognosis group, whereas CysLT2R expression was higher in the good prognosis group of CRC patients. Here, we systematically explored and established the role of the CysLTRs, cysteinyl leukotriene receptor 1(CYSLTR1) and cysteinyl leukotriene receptor 2 (CYSLTR2) gene expression and methylation in the progression and metastasis of CRC using three unique in silico cohorts and one clinical CRC cohort. Primary tumor tissues showed significant CYSLTR1 upregulation compared with matched normal tissues, whereas it was the opposite for the CYSLTR2. Univariate Cox proportional-hazards (CoxPH) analysis yielded a high expression of CYSLTR1 and accurately predicted high-risk patients in terms of overall survival (OS; hazard ratio (HR) = 1.87, p = 0.03) and disease-free survival [DFS] Hazard ratio [HR] = 1.54, p = 0.05). Hypomethylation of the CYSLTR1 gene and hypermethylation of the CYSLTR2 gene were found in CRC patients. The M values of the CpG probes for CYSLTR1 are significantly lower in primary tumor and metastasis samples than in matched normal samples, but those for CYSLTR2 are significantly higher. The differentially upregulated genes between tumor and metastatic samples were uniformly expressed in the high-CYSLTR1 group. Two epithelial&ndash;mesenchymal transition (EMT) markers, E-cadherin (CDH1) and vimentin (VIM) were significantly downregulated and upregulated in the high-CYSLTR1 group, respectively, but the result was opposite to that of CYSLTR2 expression in CRC. CDH1 expression was high in patients with less methylated CYSLTR1 but low in those with more methylated CYSLTR2. The EMT-associated observations were also validated in CC SW620 cell-derived colonospheres, which showed decreased E-cadherin expression in the LTD4 stimulated cells, but not in the CysLT1R knockdown SW620 cells. The methylation profiles of the CpG probes for CysLTRs significantly predicted lymph node (area under the curve [AUC] = 0.76, p &lt; 0.0001) and distant (AUC = 0.83, p &lt; 0.0001) metastasis. Intriguingly, the CpG probes cg26848126 (HR = 1.51, p = 0.03) for CYSLTR1, and cg16299590 (HR = 2.14, p = 0.03) for CYSLTR2 significantly predicted poor prognosis in terms of OS, whereas the CpG probe cg16886259 for CYSLTR2 significantly predicts a poor prognosis group in terms of DFS (HR = 2.88, p = 0.03). The CYSLTR1 and CYSLTR2 gene expression and methylation results were successfully validated in a CC patient cohort. In this study, we have demonstrated that CysLTRs&rsquo; methylation and gene expression profile are associated with the progression, prognosis, and metastasis of CRC, which might be used for the assessment of high-risk CRC patients after validating the result in a larger CRC cohort

    Increased MARCKS Activity in BRAF Inhibitor-Resistant Melanoma Cells Is Essential for Their Enhanced Metastatic Behavior Independent of Elevated WNT5A and IL-6 Signaling

    No full text
    Treatment of melanoma with a BRAF inhibitor (BRAFi) frequently initiates development of BRAFi resistance, leading to increased tumor progression and metastasis. Previously, we showed that combined inhibition of elevated WNT5A and IL-6 signaling reduced the invasion and migration of BRAFi-resistant (BRAFi-R) melanoma cells. However, the use of a combined approach per se and the need for high inhibitor concentrations to achieve this effect indicate a need for an alternative and single target. One such target could be myristoylated alanine-rich C-kinase substrate (MARCKS), a downstream target of WNT5A in BRAFi-sensitive melanoma cells. Our results revealed that MARCKS protein expression and activity are significantly elevated in PLX4032 and PLX4720 BRAFi-R A375 and HTB63 melanoma cells. Surprisingly, neither WNT5A nor IL-6 contributed to the increases in MARCKS expression and activity in BRAFi-R melanoma cells, unlike in BRAFi-sensitive melanoma cells. However, despite the above findings, our functional validation experiments revealed that MARCKS is essential for the increased metastatic behavior of BRAFi-R melanoma cells. Knockdown of MARCKS in BRAFi-R melanoma cells caused reductions in the F-actin content and the number of filopodia-like protrusions, explaining the impaired migration, invasion and metastasis of these cells observed in vitro and in an in vivo zebrafish model. In our search for an alternative explanation for the increased activity of MARCKS in BRAFi-R melanoma cells, we found elevated basal activities of PKCα, PKCε, PKCι, and RhoA. Interestingly, combined inhibition of basal PKC and RhoA effectively impaired MARCKS activity in BRAFi-R melanoma cells. Our results reveal that MARCKS is an attractive single antimetastatic target in BRAFi-R melanoma cells

    Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers

    No full text
    Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The current TNM (Tumor, Node, and Metastasis) classification approach is suboptimal in determining the prognosis of CRC patients. The prognosis for CRC is affected by a variety of features that are present at the initial diagnosis. Herein, we performed a systematic exploration and established a novel five-panel gene signature as a prognostic and early diagnosis biomarker after performing differential gene expression analyses in five independent in silico CRCs cohort and independently validating it in one clinical cohort, using immunohistochemistry. Four genes (BDNF, PTGS2, GSK3B, and CTNNB1) were significantly upregulated and one gene (HPGD) was significantly downregulated in primary tumor tissues compared with adjacent normal tissues throughout all the five in silico datasets. The univariate CoxPH analysis yielded a five-gene signature that accurately predicted overall survival (OS) and recurrence-free survival (RFS) in the in silico training (AUC = 0.73 and 0.69, respectively) and one independent in silico validation cohort (AUC = 0.69 and 0.74, respectively). This five-gene signature demonstrated significant associations with poor OS in independent clinical validation cohorts of colon cancer (CC) patients (AUC = 0.82). Intriguingly, a risk stratification model comprising of the five-gene signature together with TNM stage and gender status achieved an even superior AUC of 0.89 in the clinical cohorts. On the other hand, the circulating mRNA expression of the upregulated four-gene signature achieved a robust AUC = 0.83 with high sensitivity and specificity as a diagnosis marker in plasma from CRC patients. We have identified a novel, five-gene signature as an independent predictor of OS, which in combination with TNM stage and gender offers an easy-to-translate and facile assay for the personalized risk-assessment in CRC patients

    Combined Estrogen Alpha and Beta Receptor Expression Has a Prognostic Significance for Colorectal Cancer Patients

    No full text
    We reported that high estrogen receptor beta (ERβ) expression is independently associated with better prognosis in female colorectal cancer (CRC) patients. However, estrogen receptor alpha (ERα) is expressed at very low levels in normal colon mucosa, and its prognostic role in CRC has not been explored. Herein, we investigated the combined role of ERα and ERβ expression in the prognosis of female patients with CRC, which, to the best of our knowledge, is the first study to investigate this topic. A total number of 306 primary CRCs were immunostained for ERα and ERβ expression. A Cox regression model was used to evaluate overall survival (OS) and disease-free survival (DFS). The combined expression of high ERβ + negative ERα correlates with longer OS (HR = 0.23; 95% CI: 0.11–0.45, P <0.0001) and DFS (HR = 0.10; 95% CI: 0.03–0.26, P < 0.0001) and a more favorable tumor outcome, as well as significantly higher expression of antitumorigenic proteins than combined expression of low ERβ + positive ERα. Importantly, we found that low ERβ expression was associated with local recurrence of CRC, whereas ERα expression was correlated with liver metastasis. Overall, our results show that the combined high ERβ + negative ERα expression correlated with a better prognosis for CRC patients. Our results suggest that the combined expression of ERα and ERβ could be used as a predictive combination marker for CRC patients, especially for predicting DFS

    Brain-derived neurotrophic factor, neutrophils and cysteinyl leukotriene receptor 1 as potential prognostic biomarkers for patients with colon cancer

    No full text
    The tumor microenvironment has been recognized as a complex network in which immune cells play an important role in cancer progression. We found significantly higher CD66b neutrophil expression in tumor tissue than in matched normal mucosa in the Malmö colon cancer (CC) cohort and poorer survival of stage I-III patients with high CD66b expression. Additionally, mice lacking CysLT1 R expression (cysltr1−/− ) produce less brain-derived neurotrophic factor (BDNF) compared to WT mice and Montelukast (a CysLT1 R antagonist)-treated mice also reduced BDNF expression in a mouse xenograft model with human SW480 CC cells. CD66b and BDNF expression was significantly higher in patient tumor tissues than in the matched normal mucosa. The univariate Cox PH analysis yielded CD66b and BDNF as an independent predictor of overall survival, which was also found in the public TCGA-COAD dataset. We also discovered a strong positive correlation between CD66b, BDNF and CysLT1 R expression in the Malmö CC cohort and in the TCGA-COAD dataset. Our data suggest that CD66b/BDNF/CysLT1 R expression as a prognostic combined biomarker signature for CC patients

    A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells

    No full text
    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Cyclooxygenase-2, which plays a key role in the biosynthesis of prostaglandin E2 (PGE2), is often up-regulated in CRC and in other types of cancer. PGE2 induces angiogenesis and tumor cell survival, proliferation and migration. The tumor suppressor 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a key enzyme in PGE2 catabolism, converting it into its inactive metabolite 15-keto- PGE2, and is often down-regulated in cancer. Interestingly, CRC patients expressing high levels of the cysteinyl leukotriene 2 (CysLT2) receptor have a good prognosis; therefore, we investigated a potential link between CysLT2 signaling and the tumor suppressor 15-PGDH in colon cancer cells. We observed a significant up-regulation of 15-PGDH after treatment with LTC4, a CysLT2 ligand, in colon cancer cells at both the mRNA and protein levels, which could be reduced by a CysLT2 antagonist or a JNK inhibitor. LTC4 induced 15-PGDH promoter activity via JNK/AP-1 phosphorylation. Furthermore, we also observed that LTC4, via the CysLT2/JNK signaling pathway, increased the expression of the differentiation markers sucrase-isomaltase and mucin-2 in colon cancer cells and that down-regulation of 15-PGDH totally abolished the observed increase in these markers. In conclusion, the restoration of 15-PGDH expression through CysLT2 signaling promotes the differentiation of colon cancer cells, indicating an anti-tumor effect of CysLT2 signaling
    corecore