80 research outputs found

    Diacylglycerol Kinase Is Stimulated by Arachidonic Acid in Neural Membranes.

    No full text
    The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 mM dipalmitin and [gamma-P-32]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was similar to 1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 mM AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 mu M). The stimulation was proportional to the concentration of AA up to 250 mu M. AA was the most potent stimulator of DG kinase, and linolenic acid showed similar to 40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 mu M. It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity

    Topology of wolfgram proteins and 2?, 3?-cyclic nucleotide 3?-phosphodiesterase in CNS myelin: Studies with proteases

    No full text
    The topological disposition of Wolfgram proteins (WP) and their relationship with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W > 14KDa were detected on the gels. Therefore protein fragments of WP with M.W < 14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis

    Annealing effect on transport properties of Nd0.67Sr0.33MnO3Nd_{0.67}Sr_{0.33}MnO_{3} thin films

    No full text
    Annealing dependence of the lattice parameter, resistivity, magnetoresistance and thermopower have been studied on Nd0.67Sr0.33MnO3Nd_{0.67}Sr_{0.33}MnO_{3} thin films deposited on LaAlO3LaAlO_{3} and alumina substrates by pulsed laser ablation. Upon annealing at 800 degree C and 1000 degree C the lattice constant of the LaAlO3 film tends toward that of the bulk target due to reduction in oxygen vacancies. This results in a metal-insulator transition at temperatures which increase with progressive annealing along with a decrease in the observed low temperature MR. Using a magnon scattering model we estimate the eg bandwidth of the film annealed at 1000 degree C and show that the magnon contribution to the resistivity is suppressed in a highly oxygen deficient film and gains prominence only upon subsequent annealing.We also show that upon annealing, the polaron concentration and the spin cluster size increases in the paramagnetic phase, using an adiabatic polaron hopping model which takes into account an exchange dependent activation energy above the resistivity peak

    Not Available

    No full text
    Not AvailableLeptin is supposed to play a crucial role in ovarian luteal dynamics. The present study was aimed to investigate the importance of leptin and its receptors in buffalo corpus luteum (CL) obtained from different stages of the estrous cycle. Real-time RT-PCR (qPCR), western blot and immunohistochemistry techniques were applied to investigate mRNA expression, protein expression and localization of examined factors. Additionally to assess the contribution of leptin in progesterone production the expression profiles of StAR, P450scc and HSD were also investigated. In general, we demonstrated presence of leptin and its receptors in buffalo CL during the estrous cycle. The mRNA levels of leptin and its receptors were significantly up regulated in (P<0.05) in all the stages and highest levels were observed in mid and late luteal stages consistent with in vivo luteinization of buffalo CL and declined coincidental to luteal regression. The expression of StAR, P450scc and HSD factors maintained low in early luteal phase, after that level of expression increased steadily to show a significant rise (P<0.05) in mid luteal phase followed by gradual decline in late luteal phase and regressed CL and this correlates well with the Ob and ObR receptor activity, verifying their key role in progesterone and other steroids production in functional CL. As revealed by immunohistochemistry, leptin protein was localized predominantly in large luteal cells however leptin receptor (Ob-R) was localized in large luteal cells as well as in endothelial cells. It can be concluded from our study that leptin via its autocrine/paracrine effects play a significant role in promoting angiogenesis, steroidogenesis and also acts as key survival factor in bubaline CL.Not Availabl
    corecore