2,746 research outputs found

    Density-temperature scaling of the fragility in a model glass-former

    Full text link
    Dynamical quantities such as the diffusion coefficient and relaxation times for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable. Such a scaling, referred to as density - temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence of the activation free energy in the Adam-Gibbs relation, is consistent with the exponent values obtained by other means

    Note on Modern Trends in Heavy Vehicle Electrical Electronic systems

    Get PDF
    The paper presents an overview of some of the aerospace control systems that are being successfully adopted in the field of Armoured Fighting Vehicles. An automatic electronic transmission controller for an epicyclic gear box with a torque converter to select the forward and reverse speeds in a sequential logic has been developed. Transducers developed for monitoring various engine and transmission parameters are being used for Electronic Fuel Injection (EFI), variable valve timings and electronic governing

    Crossover to Potential Energy Landscape Dominated Dynamics in a Model Glass-forming Liquid

    Full text link
    An equilibrated model glass-forming liquid is studied by mapping successive configurations produced by molecular dynamics simulation onto a time series of inherent structures (local minima in the potential energy). Using this ``inherent dynamics'' approach we find direct numerical evidence for the long held view that below a crossover temperature, TxT_x, the liquid's dynamics can be separated into (i) vibrations around inherent structures and (ii) transitions between inherent structures (M. Goldstein, J. Chem. Phys. {\bf 51}, 3728 (1969)), i.e., the dynamics become ``dominated'' by the potential energy landscape. In agreement with previous proposals, we find that TxT_x is within the vicinity of the mode-coupling critical temperature TcT_c. We further find that at the lowest temperature simulated (close to TxT_x), transitions between inherent structures involve cooperative, string like rearrangements of groups of particles moving distances substantially smaller than the average interparticle distance.Comment: Expanded from 4 to 7 page

    Complex free energy landscapes in biaxial nematics and role of repulsive interactions : A Wang - Landau study

    Full text link
    General quadratic Hamiltonian models, describing interaction between crystal molecules (typically with D2hD_{2h} symmetry) take into account couplings between their uniaxial and biaxial tensors. While the attractive contributions arising from interactions between similar tensors of the participating molecules provide for eventual condensation of the respective orders at suitably low temperatures, the role of cross-coupling between unlike tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling) showed clearly the increasing relevance of this cross term in determining the phase diagram, contravening in some regions of model parameter space, the predictions of mean field theory and standard Monte Carlo simulation results. In this context, we investigated the phase diagrams and the nature of the phases therein, on two trajectories in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion approximation. In both the cases, we find the destabilizing effect of increased cross-coupling interactions, which invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as a small, but unmistakable, contribution of biaxial order in the uniaxial phase.The free energy profiles computed in the present study as a function of the two dominant order parameters indicate complex landscapes, reflecting the difficulties in the ready realization of the biaxial phase in the laboratory.Comment: 23 pages, 12 figure
    • …
    corecore