751 research outputs found

    Non-linear Coulomb blockade microscopy of a correlated one-dimensional quantum dot

    Full text link
    We evaluate the chemical potential of a one-dimensional quantum dot, coupled to an atomic force microscope tip. The dot is described within the Luttinger liquid framework and the conductance peaks positions as a function of the tip location are calculated in the linear and non-linear transport regimes for an arbitrary number of particles. The differences between the chemical potential oscillations induced by Friedel and Wigner terms are carefully analyzed in the whole range of interaction strength. It is shown that Friedel oscillations, differently from the Wigner ones, are sensitive probes to detect excited spin states and collective spin density waves involved in the transport.Comment: 4 figure

    Temperature-induced emergence of Wigner correlations in a STM-probed one-dimensional quantum dot

    Full text link
    The temperature-induced emergence of Wigner correlations over finite-size effects in a strongly interacting one-dimensional quantum dot are studied in the framework of the spin coherent Luttinger liquid. We demonstrate that, for temperatures comparable with the zero mode spin excitations, Friedel oscillations are suppressed by the thermal fluctuations of higher spin modes. On the other hand, the Wigner oscillations, sensitive to the charge mode only, are stable and become more visible. This behavior is proved to be robust both in the thermal electron density and in the linear conductance in the presence of an STM tip. This latter probe is not directly proportional to the electron density and may confirm the above phenomena with complementary and additional information

    Signatures of fractional Hall quasiparticles in moments of current through an antidot

    Full text link
    The statistics of tunneling current in a fractional quantum Hall sample with an antidot is studied in the chiral Luttinger liquid picture of edge states. A comparison between Fano factor and skewness is proposed in order to clearly distinguish the charge of the carriers in both the thermal and the shot limit. In addition, we address effects on current moments of non-universal exponents in single-quasiparticle propagators. Positive correlations, result of propagators behaviour, are obtained in the shot noise limit of the Fano factor, and possible experimental consequences are outlined

    Multiple quasiparticle Hall spectroscopy investigated with a resonant detector

    Full text link
    We investigate the finite frequency (f.f.) noise properties of edge states in the quantum Hall regime. We consider the measurement scheme of a resonant detector coupled to a quantum point contact in the weak-backscattering limit. A detailed analysis of the difference between the "measured" noise, due to the presence of the resonant detector, and the symmetrized f.f. noise is presented. We discuss both the Laughlin and Jain sequences, studying the tunnelling excitations in these hierarchical models. We argue that the measured noise can better distinguish between the different excitations in the tunnelling process with respect to the symmetrized f.f. counterpart in an experimentally relevant range of parameters. Finally, we illustrate the effect of the detector temperature on the sensibility of this measure.Comment: 24 pages, 8 figure

    Theory of the STM detection of Wigner molecules in spin incoherent CNTs

    Full text link
    The linear conductance of a carbon nanotube quantum dot in the Wigner molecule regime, coupled to two scanning tunnel microscope tips is inspected. Considering the high temperature regime, the nanotube quantum dot is described by means of the spin-incoherent Luttinger liquid picture. The linear conductance exhibits spatial oscillations induced by the presence of the correlated, molecular electron state. A power-law scaling of the electron density and of the conductance as a function of the interaction parameter are found. They confirm local transport as a sensitive tool to investigate the Wigner molecule. The double-tip setup allows to explore different transport regimes with different shapes of the spatial modulation, all bringing information about the Wigner molecule

    Crystallization of fractional charges in a strongly interacting quasi-helical quantum dot

    Full text link
    The ground-state electron density of a one-dimensional spin-orbit coupled quantum dot with a Zeeman term and strong electron interaction is studied at the fractional helical liquid points. We show that at fractional filling factors ν=(2n+1)1\nu=(2n+1)^{-1} (with nn a non-negative integer) the density oscillates with N0/νN_{0}/\nu peak. For n1n\geq 1 a number of peaks larger than the number of electrons N0N_{0} suggests that a crystal of fractional quasi-particles with charge νe\nu e (with ee the electron charge) occurs. The reported effect is amenable of verification via transport measurements in charged AFM-coupled dot
    corecore