911 research outputs found

    Correlation functions for extended mass galaxy clusters

    Full text link
    The phenomenon of clustering of galaxies on the basis of correlation functions in an expanding Universe is studied by using equation of state, taking gravitational interaction between galaxies of extended nature into consideration. The partial differential equation for the extended mass structures of a two-point correlation function developed earlier by Iqbal, Ahmad and Khan is studied on the basis of assigned boundary conditions. The solution for the correlation function for extended structures satisfies the basic boundary conditions, which seem to be sufficient for understanding the phenomena, and provides a new insight into the gravitational clustering problem for extended mass structures.Comment: 3 pages, no figure

    The galaxy counts-in-cells distribution from the SDSS

    Full text link
    We determine the galaxy counts-in-cells distribution from the Sloan Digital Sky Survey (SDSS) for 3D spherical cells in redshift space as well as for 2D projected cells. We find that cosmic variance in the SDSS causes the counts-in-cells distributions in different quadrants to differ from each other by up to 20%. We also find that within this cosmic variance, the overall galaxy counts-in-cells distribution agrees with both the gravitational quasi-equilibrium distribution and the negative binomial distribution. We also find that brighter galaxies are more strongly clustered than if they were randomly selected from a larger complete sample that includes galaxies of all luminosities. The results suggest that bright galaxies could be in dark matter haloes separated by less than ~10 Mpc/h.Comment: Accepted for publication in the Astrophysical Journal. Revised version with referee suggestions and corrected typo

    Shapes and Probabilities of Galaxy Clusters II: Comparisons with observations

    Full text link
    We identify low redshift clusters and groups in the Sloan Digital Sky Survey (SDSS) and estimate their kinetic and correlation potential energies. We compare the distribution of these energies to the predictions by Yang and Saslaw (2012) and in the process estimate a measure of an average 3-dimensional velocity and spatial anisotropy of a sample of clusters. We find that the inferred velocity anisotropy is correlated with the inferred spatial anisotropy. We also find that the general shape of the energy distribution agrees with theory over a wide range of scales from small groups to superclusters once the uncertainties and fluctuations in the estimated energies are included.Comment: 18 Pages, 8 figures. Accepted by ApJ. Latest version incorporates the referee's suggestions and comment

    Shapes and Probabilities of Galaxy Clusters

    Full text link
    We develop a general theory for estimating the probability that a galaxy cluster of a given shape exists. The theory is based on the observed result that the distribution of galaxies is very close to quasi-equilibrium, in both its linear and nonlinear regimes. This places constraints on the spatial configuration of a cluster of galaxies in quasi-equilibrium. In particular, we show that that a cluster of galaxies may be described as a collection of nearly virialized subclusters of approximately the same mass. Clusters that contain more than 10 subclusters are very likely to be completely virialized. Using our theory, we develop a method for comparing probabilities of different spatial configurations of subclusters. As an illustrative example, we show that a cluster of galaxies arranged in a line is more likely to occur than a cluster of galaxies arranged in a ring.Comment: 18 pages, 6 figures. Corrected typos and incorporated referee suggestions. Accepted for publication in the Ap

    New anisotropic models from isotropic solutions

    Full text link
    We establish an algorithm that produces a new solution to the Einstein field equations, with an anisotropic matter distribution, from a given seed isotropic solution. The new solution is expressed in terms of integrals of known functions, and the integration can be completed in principle. The applicability of this technique is demonstrated by generating anisotropic isothermal spheres and anisotropic constant density Schwarzschild spheres. Both of these solutions are expressed in closed form in terms of elementary functions, and this facilitates physical analysis.Comment: 23 pages, To appear in Math. Meth. Appl. Sc

    Gravitational Binding, Virialization and the Peculiar Velocity Distribution of the Galaxies

    Full text link
    We examine the peculiar velocity distribution function of galaxies in cosmological many-body gravitational clustering. Our statistical mechanical approach derives a previous basic assumption and generalizes earlier results to galaxies with haloes. Comparison with the observed peculiar velocity distributions indicates that individual massive galaxies are usually surrounded by their own haloes, rather than being embedded in common haloes. We then derive the density of energy states, giving the probability that a randomly chosen configuration of N galaxies in space is bound and virialized. Gravitational clustering is very efficient. The results agree well with the observed probabilities for finding nearby groups containing N galaxies. A consequence is that our local relatively low mass group is quite typical, and the observed small departures from the local Hubble flow beyond our group are highly probable.Comment: Paper in aastex 5.0 format and 9 figures. Replace a new version with figures and typos correcte

    Gravitational Wave Signals from Chaotic System: A Point Mass with A Disk

    Full text link
    We study gravitational waves from a particle moving around a system of a point mass with a disk in Newtonian gravitational theory. A particle motion in this system can be chaotic when the gravitational contribution from a surface density of a disk is comparable with that from a point mass. In such an orbit, we sometimes find that there appears a phase of the orbit in which particle motion becomes to be nearly regular (the so-called ``stagnant motion'') for a finite time interval between more strongly chaotic phases. To study how these different chaotic behaviours affect on observation of gravitational waves, we investigate a correlation of the particle motion and the waves. We find that such a difference in chaotic motions reflects on the wave forms and energy spectra. The character of the waves in the stagnant motion is quite different from that either in a regular motion or in a more strongly chaotic motion. This suggests that we may make a distinction between different chaotic behaviours of the orbit via the gravitational waves.Comment: Published in Phys.Rev.D76:024018,200

    Clustering in gravitating N-body systems

    Full text link
    We study gravitational clustering of mass points in three dimensions with random initial positions and periodic boundary conditions (no expansion) by numerical simulations. Correlation properties are well defined in the system and a sort of thermodynamic limit can be defined for the transient regime of cluste ring. Structure formation proceeds along two paths: (i) fluid-like evolution of density perturbations at large scales and (ii) shift of the granular (non fluid) properties from small to large scales. The latter mechanism finally dominates at all scales and it is responsible for the self-similar characteristics of the clustering.Comment: 7 pages, 3 figures. Accepted for publication in Europhys. Let

    Inhomogeneous imperfect fluid spherical models without Big-Bang singularity

    Get PDF
    So far all known singularity-free cosmological models are cylindrically symmetric. Here we present a new family of spherically symmetric non-singular models filled with imperfect fluid and radial heat flow, and satisfying the weak and strong energy conditions. For large tt anisotropy in pressure and heat flux tend to vanish leading to a perfect fluid. There is a free function of time in the model, which can be suitably chosen for non-singular behaviour and there exist multiplicity of such choices.Comment: 8 pages, LaTeX versio
    corecore