21 research outputs found

    Dynamic Regulation of Endothelial Nitric Oxide Synthase: Complementary Roles of Dual Acylation and Caveolin Interactions †

    Get PDF
    ABSTRACT: N-Terminal myristoylation and thiopalmitoylation of the endothelial isoform of nitric oxide synthase (eNOS) are required for targeting the enzyme to specialized signal-transducing microdomains of plasma membrane termed caveolae. We have previously documented that the subcellular localization of eNOS is dynamically regulated by agonists such as bradykinin, which promotes enzyme depalmitoylation and translocation from caveolae. More recently, we have shown that association of eNOS with caveolin, the principal structural protein in caveolae, leads to enzyme inhibition, in a reversible process modulated by Ca 2+ -calmodulin (CaM). We now report studies of the respective roles of acylation and caveolin interaction for regulating eNOS activity. Using eNOS truncation and deletion mutants expressed in COS-7 cells, we have identified an obligatory role for the N-terminal half of eNOS in stabilizing its association with caveolin. By exploring the differential effects of detergents (CHAPS Vs octyl glucoside), we have shown that this direct interaction between both proteins is facilitated by, but does not require, eNOS acylation, and, importantly, that treatment of intact aortic endothelial cells with the calcium ionophore A23187 leads to the rapid disruption of the eNOS-caveolin complexes. Finally, using transiently transfected COS-7 cells, we have observed that the myristoylation-deficient cytosol-restricted eNOS mutant (myr -) as well as the cytosolic fraction of the palmitoylation-deficient eNOS mutant (palm -) may both interact with caveolin; this association also leads to a marked inhibition of enzyme activity, which is completely reversed by addition of calmodulin. We conclude that the regulatory eNOS-caveolin association is independent of the state of eNOS acylation, indicating that agonist-evoked Ca 2+ /CaMdependent disruption of the caveolin-eNOS complex, rather than agonist-promoted depalmitoylation of eNOS, relieves caveolin's tonic inhibition of enzyme activity. We therefore propose that caveolin may serve as an eNOS chaperone regulating NO production independently of the enzyme's residence within caveolae or its state of acylation

    Caveolin versus calmodulin : Counterbalancing allosteric modulators of endothelial nitric oxide synthase

    No full text
    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin
    corecore