2 research outputs found

    Foot Arch and Plantar Pressure in the Age of 17-21 Years

    Get PDF
    Research on the plantar segment has not been widely carried out in Indonesia’s population, even though the plantar segment data will be essential in further research and therapy of plantar-related problems. Therefore, this research intends to describe the plantar profile: the foot arch and the plantar pressure difference between the right and left foot. This research applied a cross-sectional study. Subjects were recruited from the Faculty of Medicine students, Universitas Indonesia, class 2012, with inclusion criteria aged 17-21 years and normal gait. Meanwhile, the exclusion criteria consisted of having postural abnormalities, a history of neuromusculoskeletal disorders in the lower limbs, a history of fractures in the spine and legs, a history of surgery on the spine and legs, and refusing to participate in the study. Research subjects stood on a plantar scanner, conducted at the Anatomy Laboratory, the Faculty of Medicine, Universitas Indonesia. The Mann-Whitney test was then used to analyze the difference in plantar pressure between the right and left foot. The results revealed that a hundred research subjects had a proportion of a low foot arch of 4%, a normal foot arch of 89%, and a high foot arch of 7%. The median right plantar pressure was 273.5 KPa, while the median left plantar pressure was 253.5 KPa. The Mann-Whitney test showed a p-value of 0.954 for the pressure difference between right and left foot. There was no plantar pressure difference between the right and left foot

    Effect of Body Mass Index on Postural Balance and Muscle Strength in Children Aged 8-10 years

    No full text
    Background:Childhood overweight and obesity, which are considered as global epidemic, can be assessed using Body Mass Index (BMI). BMI difference can lead to anatomic changes due to an increased body load. This increase might also affect motor performance, including changes in postural balance and muscle strength. Aims and Objectives: to explain the influence of BMI on postural balance and lower limb muscle strength and to assess the correlation between those two variables in children aged 8-10 years. Material and methods:The sample consisted of 63 children aged 8-10 years, which were divided in 3 groups: BMI-normal, BMI-overweight, and BMI-obese. The postural balance was assessed using single leg balance test on MatScan and the Center Of Pressure (COP) area was recorded. Isometric muscle strength of hip extensor and knee extensor were measured using a hand-held dynamometer. Results: Obese children had significantly largerCOP area than overweight (p = 0.004) and normal weight children (p = 0.000).There were no significant differences in hip extensor muscle strength between obese children with overweight and normal weight children (p=0.527). The absolute knee extensor muscle strength in obese group was significantly higher than the overweight and normal group (p = 0.003). However the relative muscle strength of lower limb for obese children was significantly lower than for normal weight. There was no significant correlation between absolute hip extensor and knee extensor muscles strength with COP area. Conclusion: Obese children have decreased postural balance and increased absolute knee extensormuscle strength significantly when compared to overweight and normal children. There is no significant correlation between postural balance and muscle strength
    corecore