25 research outputs found

    Comments on: 'Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran'

    No full text
    The recently published article (https://doi.org/10.1016/j.envres.2018.11.046), authored by Mohsen Ansari and Mohammad Hassan Ehrampoush (2019), was read with keen interest and in detail. The article aimed to investigate the correlation between ambient fine particulate matter (PM2.5, particulate matter with aerodynamic diameter 2.5 μm and smaller) and meteorological parameters, such as temperature, humidity, precipitation and wind speed. Additionally, the World Health Organization AirQ + software, updated in 2016 by WHO European Centre for Environment and Health, was applied to estimate all-cause and also five specific causes of death (namely, ischemic heart disease (IHD), cerebrovascular disease (stroke), lung cancer (LC), chronic obstructive pulmonary disease (COPD) and acute lower respiratory infection (ALRI)) due to long-term exposure to PM2.5 in Tehran from for the year spanning March 2017 to March 2018. It was reported that the authors obtained hourly concentrations of ambient PM2.5 from Air Quality Monitoring Stations (AQMSs) operated by the Tehran Air Quality Control Company (TAQCC). Other required data also were gathered from governmental organizations, including the Statistical Centre of Iran (SCI), the Civil Registration Office of Tehran, and the Ministry of Health and Medical Education. We believe there are a number of controversial issues that should be brought to the attention of readers, especially within the materials and methods sections, including “Description of Study Area”, “Air Pollution Data Monitoring and Exposure Assessment” and “AirQ+ Software”; and in subsequent sections, we also highlight some issues impacting the interpretability of the article

    Assessment of bioaerosol particle characteristics at different hospital wards and operating theaters: A case study in Tehran

    No full text
    This study was aimed to investigate the types and number of bacterial and fungal bioaerosols in indoor air of hospitals according to the type of wards and operating theaters. Bacterial and fungal samples were collected using the passive sampling method of 1/1/1 scheme during a six months' period in the Khatam-Al-Anbia hospital, Tehran, Iran. A simple linear regression was used to determine the relationship between bioaerosol concentrations and the number of active beds. Bacterial bioaerosol concentrations were mainly higher than fungi in all sampling sites. A significant association was found between airborne fungal concentrations and the numbers of beds (R2 = 0.76, p < 0.05), but not observed for bacteria (R2 = 0.02, p < 0.05). Our findings provided an exposure database of airborne bacterial and fungal bioaerosol in hospital wards and operating theaters in Tehran. • Due to the importance of the exposure risk to bioaerosols for patients and medical personnel, we focused on identification of the density and diversity of bacterial and fungal bioaerosols in different wards and operating theaters. • Our results showed that the numbers of the beds have a significant effect on airborne fungal concentrations. • The results of this study can be used to set indoor air quality standards for hospital wards and operating theatres. Method name: Bacterial and fungal samples were collected using the passive sampling method of 1/1/1 scheme during a six months' period in the specialty and subspecialty the hospital from August 2015 to February 2016, Keywords: Hospital airborne bioaerosols, Indoor air, Fungal bioaerosol, Tehra

    Impact of SARS-CoV-2 on ambient air particulate matter in Tehran

    No full text
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has indirectly produced both positive and negative effects on the environment, particularly in terms of air quality. Our study aimed to determine these effects in the city of Tehran by comparing the ambient PM2.5 and PM10 levels recorded at 22 air quality monitoring stations during the outbreak (20 February–2 April 2020) with those from the corresponding period last year (20 February–3 April 2019). Contrary to expectation, the average concentrations of both the PM2.5 and the PM10 were markedly higher during the former, increasing by 20.5% and 15.7%, respectively, for the first month of the outbreak (20 February–19 March 2020) and by 23.5% and 20.0% for the subsequent Nowruz New Year holidays (from late March till early April), which resulted in overall increases of 20.5% and 16.5% for the entire period. The non-integrated responses to the pandemic, including the failure to close administrative centers and, in particular, the recommendation to maintain social distancing by reducing public transportation use (prompting citizens to travel by private vehicle), have worsened the ambient air quality in Tehran, providing an exceptional opportunity to evaluate the direct/indirect influence of air quality policies and emission control measures on PM2.5 and PM10. Because of the significant association between the lethality of coronavirus disease 2019 (COVID-19) and exposure to ambient air pollution, the rise in airborne PM2.5 during this outbreak may increase the mortality rate of SARS-CoV-2.</p

    The effect of COVID-19 pandemic on human mobility and ambient air quality around the world: A systematic review

    No full text
    We conducted this systematic review to identify and appraise studies investigating the coronavirus disease 2019 (COVID-19) effect on ambient air pollution status worldwide. The review of studies was conducted using determined search terms via three major electronic databases (PubMed, Web of Science, and Scopus) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. A total of 26 full-text studies were included in our analysis. The lockdown measures related to COVID-19 pandemic caused significant decreases in the concentrations of PM2.5, NO2, PM10, SO2 and CO globally in the range of 2.9%–76.5%, 18.0%–96.0%, 6.0%–75.0%, 6.8%–49.0% and 6.2%–64.8%, respectively. However, O3 concentration increased in the range of 2.4%–252.3%. The highest decrease of PM2.5 was found in 16 states of Malaysia (76.5%), followed by Zaragoza (Spain) with 58.0% and Delhi (India) with 53.1%. The highest reduction of NO2 was found in Salé city (Morocco) with 96.0%, followed by Mumbai (India) with 75.0%, India with 70.0%, Valencia (Spain) with 69.0%, and São Paulo (Brazil) with 68.0%, respectively. The highest increase of O3 was recorded for Milan (Italy) with 252.3% and 169.9% during the first and third phases of lockdown measures, and for Kolkata (India) with 87% at the second phase of lockdown measures. Owing to the lockdown restrictions in the studied countries and cities, driving and public transit as a proxy of human mobilities and the factors affecting emission sources of ambient air pollution decreased in the ranges of 30–88% and 45–94%, respectively. There was a considerable variation in the reduction of ambient air pollutants in the countries and cities as the degree of lockdown measures had varied there. Our results illustrated that the COVID-19 pandemic had provided lessons and extra motivations for comprehensive implementing policies to reduce air pollution and its health effects in the future.</p

    Black carbon temporal trends and associated health and economic impacts in Tehran

    No full text
    Atmospheric black carbon (BC) particles resulting from the incomplete combustion of both fossil and non-fossil sources recently gained significant attention globally due to their potential health impacts. This study aimed to investigate the temporal trends of ambient BC in urban traffic (Sharif station) and background (Setad-e-Bohran station) air pollutants monitoring sites in Tehran, and to estimate its health and economic burdens from March 2017 to March 2018. The mean BC concentration in the traffic and urban background sites in cold seasons was 6.4 μg/m3 and 3.4 μg/m3. During the warm season, these figures were 4.4 μg/m3 and 2.3 μg/m3, respectively. Our observations indicated that ambient BC concentration was lower during weekends, more likely due to decreased traffic levels compared to weekdays. Our results showed that the concentration of BC and the BC/PM2.5 ratio were higher during nighttime in Tehran, likely due to high atmospheric stability and increased transit of heavy-duty diesel vehicles. We found strong correlation coefficients between BC, CO (BC–CO, r = 0.83, p 2 (BC– NO2, r = 0.64, p 2.5 (BC- PM2.5, r = 0.89, p 2.5 (BC- other components of PM2.5, r = 0.81, p 2.5 in Tehran is due to BC, which can be avoided by adopting and implementing appropriate and sustainable air quality abatements.</p

    Health Impact Assessment of air Pollution in Megacity of Tehran, Iran

    Get PDF
    The aims of the present study were to provide quantitative data on the impact of air pollution on the health of people living in Tehran city, the most populated city of Iran. The approach proposed by the World Health Organization (WHO) was applied using the AirQ 2.2.3 software developed by the WHO European Centre for Environment and Health, Bilthoven Division. Concentrations of ozone, nitrogen dioxide, sulfur dioxide and particulate matter of aerodynamic diameter ≤ 10 μm (PM10) were used to assess human exposure and healthimpacts in terms of attributable proportion of the health outcome, annual number of excess cases of mortality for all causes, and cardiovascular and respiratory diseases. The annual average of PM10, SO2, NO2 and O3 in Tehran were 90.58, 89.16, 85 and 68.82 μg/m3, respectively. Considering short-term effects, PM10 had the highest health impact on the 8,700,000 inhabitants of Tehran city, causing an excess of total mortality of 2194 out of 47284 in a year. Sulfur dioxide, nitrogen dioxide and ozone caused about, respectively, 1458, 1050 and 819 excess cases of total mortality. Results indicate that the magnitude of the health impact estimated for the city of Tehranunderscores the need for urgent action to reduce the health burden of air pollution

    An updated systematic review and meta-analysis on portable air cleaners and blood pressure: Recommendations for users and manufacturers

    No full text
    Fine particulate matter (PM2.5) air pollution is a leading contributor to the global burden of cardiovascular disease (CVD). One important underlying mechanism is an increase in blood pressure (BP). A growing number of studies have reported a beneficial effect of portable air cleaners (PACs) on systolic and diastolic BP; SBP and DBP. We conducted an updated systematic review and meta-analysis of studies using true versus sham mode filtration reporting the effects on BP. Of 214 articles identified up to February 5, 2023, seventeen (from China, USA, Canada, South Korea and Denmark) enrolling approximately 880 participants (484 female) met the inclusion criteria for meta-analyses. Aside from studies conducted in China, research on PACs and BP has been conducted in relatively low pollution settings. Mean indoor PM2.5 concentrations during the active and sham mode purification were 15.9 and 41.2 µg/m3, respectively. The mean efficiency of PACs against indoor PM2.5 was 59.8 % (ranging from 23 % to 82 %). True mode filtration was associated with a pooled mean difference of − 2.35 mmHg (95 % confidence interval [CI]: − 4.5, − 0.2) and − 0.81 mmHg (95 % CI: − 1.86, 0.24) in SBP and DBP, respectively. After removing the studies with high risk of bias, the magnitude of the pooled benefits on SBP and DBP increased to − 3.62 mmHg (95 % CI: − 6.69, − 0.56) and − 1.35 mmHg (95 % CI: − 2.29, − 0.41), respectively. However, there are several barriers to the use of PACs, specifically in low- and middle-income countries (LMICs), such as the initial purchase cost and filter replacements. There may be several avenues to help overcome these economic burdens and improve cost effectiveness, such as implementing government or other subsidized programs to distribute PACs targeting vulnerable and higher-risk individuals. We propose that environmental health researchers and healthcare providers should be better trained to educate the public regarding the use of PACs to reduce the impacts of PM2.5 on cardiometabolic diseases globally

    Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults

    No full text
    Numerous studies have found that risk of cardiovascular diseases is associated with increased blood levels of circulating markers of systemic inflammation. We investigated associations of acute exposure to bioaerosols (bacteria and fungi) with blood markers of inflammation and coagulation using panels of elderly subjects and healthy young adults. We conducted a panel study of 44 nonsmoker elderly subjects in a retirement communities and a panel study of 40 healthy young adults living in a school dormitory within Tehran city, Iran. Blood sample biomarkers were measured weekly over 6 weeks and including high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), von Willebrand factor (vWF), white blood cells (WBC) count and interleukin-6 (IL-6). We found significant positive associations for IL-6 and WBC with exposure to Aspergillus spp. (As), Cladosporium spp. (Cl), Penicillium spp. (Pe), total fungi (TF) and Micrococcus spp. (MI); vWF with Cl and MI; sTNF-RII with Staphylococcus spp. (ST) in healthy young adults from the current-day and multiday averages. For elderly subjects, we observed significant positive associations for hsCRP, sTNF-RII and WBC with exposure to MI, but not with ST and total bacteria (TB). Our results showed the strongest significant positive associations for IL-6 with MI, ST and TB in elderly people. In addition, IL-6 was also positively associated with As, Cl and Pe in elderly. Also, the results showed that increase of vWF was significantly associated with bacterial and fungal aerosols, except Bacillus spp. (BA) at some lags in elderly subjects. Pooled results support the pivotal role of bioaerosols in increasing the level of some of inflammatory biomarkers, especially IL-6 and WBC in healthy young adults but possibly also in elderly people.</p

    Spatial homogeneity and heterogeneity of ambient air pollutants in Tehran

    No full text
    To investigate spatial inequality of ambient air pollutants and comparison of their heterogeneity and homogeneity across Tehran, the following quantitative indicators were utilized: coefficient of divergence (COD), the 90th percentile of the absolute differences between ambient air pollutant concentrations and coefficient of variation (CV). Real-time hourly concentrations of particulate matter (PM) and gaseous air pollutants (GAPs) of twenty-two air quality monitoring stations (AQMSs) were obtained from Tehran Air Quality Control Company (TAQCC) in 2017. Annual mean concentrations of PM2.5, PM10–2.5, and PM10 (PMX) ranged from 21.7 to 40.5, 37.3 to 75.0 and 58.0 to 110.4 μg m−3, respectively. Annual mean PM2.5 and PM10 concentrations were higher than the World Health Organization air quality guideline (WHO AQG) and national standard levels. NO2, O3, SO2 and CO annual mean concentrations ranged from 27.0 to 76.8, 15.5 to 25.1, 4.6 to 12.2 ppb, and 1.9 to 3.8 ppm over AQMSs, respectively. Our generated spatial maps exhibited that ambient PMX concentrations increased from the north into south and south-western areas as the hotspots of ambient PMX in Tehran. O3 hotspots were observed in the north and south-west, while NO2 hotspots were in the west and south. COD values of PMX demonstrated more results lower than the 0.2 cut off compared to GAPs; indicating high to moderate spatial homogeneity for PMX and moderate to high spatial heterogeneity for GAPs. Regarding CV approach, the spatial variabilities of air pollutants followed in the order of O3 (87.3%) > SO2 (65.2%) > CO (61.8%) > PM10–2.5 (52.5%) > PM2.5 (48.9%) > NO2 (48.1%) > PM10 (42.9%), which were mainly in agreement with COD results, except for NO2. COD values observed a statistically (P th percentile across AQMSs. Our study, for the first time, highlights spatial inequality of ambient PMX and GAPs in Tehran in detail to better facilitate establishing new intra-urban control policies.</p
    corecore