11 research outputs found

    Clustering Malicious DNS Queries for Blacklist-Based Detection

    Get PDF
    Some of the most serious threats to network security involve malware. One common way to detect malware-infected machines in a network is by monitoring communications based on blacklists. However, such detection is problematic because (1) no blacklist is completely reliable, and (2) blacklists do not provide the sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. In this paper, we propose a malicious DNS query clustering approach for blacklist-based detection. Unlike conventional classification, our cause-based classification can efficiently analyze malware communications, allowing infected machines in the network to be addressed swiftly

    Multiagent-Based Data Presentation Mechanism for Multifaceted Analysis in Network Management Tasks

    No full text
    Although network management tasks are highly automated using big data and artificial intelligence technologies, when an unforeseen cybersecurity problem or fault scenario occurs, administrators sometimes directly analyze system data to make a heuristic decision. However, a wide variety of information is required to address complex cybersecurity risks, whereas current systems are focused on narrowing the candidates of information. In this study, we propose a multiagent-based data presentation mechanism (MADPM) that consists of agents operating data-processing tools that store and analyze network data. Agents in MADPM interact with other agents to form data-processing sequences. In this process, we design not only the composition of the sequence according to requirements, but also a mechanism to expand it to enable multifaceted analysis that supports heuristic reasoning. We tested five case studies in the prototype system implemented in an experimental network. The results indicated that the multifaceted presentation of data can support administrators more than the selected single-faceted optimal presentation. The final outcome of our proposed approach is the provision of a multifaceted and cross-system data presentation for heuristic inference in network management tasks

    Analysis of the Macroscopic Behavior of Server Systems in the Internet Environment

    No full text
    Elasticity is one of the key features of cloud-hosted services built on virtualization technology. To utilize the elasticity of cloud environments, administrators should accurately capture the operational status of server systems, which changes constantly according to service requests incoming irregularly. However, it is difficult to detect and avoid in advance that operating services are falling into an undesirable state. In this paper, we focus on the management of server systems that include cloud systems, and propose a new method for detecting the sign of undesirable scenarios before the system becomes overloaded as a result of various causes. In this method, a measure that utilizes the fluctuation of the macroscopic operational state observed in the server system is introduced. The proposed measure has the property of drastically increasing before the server system is in an undesirable state. Using the proposed measure, we realize a function to detect that the server system is falling into an overload scenario, and we demonstrate its effectiveness through experiments

    A Cause-Based Classification Approach for Malicious DNS Queries Detected Through Blacklists

    Get PDF
    Some of the most serious security threats facing computer networks involve malware. To prevent this threat, administrators need to swiftly remove the infected machines from their networks. One common way to detect infected machines in a network is by monitoring communications based on blacklists. However, detection using this method has the following two problems: no blacklist is completely reliable, and blacklists do not provide sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. Therefore, simply matching communications with blacklist entries is insufficient, and administrators should pursue their detection causes by investigating the communications themselves. In this paper, we propose an approach for classifying malicious DNS queries detected through blacklists by their causes. This approach is motivated by the following observation: a malware communication is divided into several transactions, each of which generates queries related to the malware; thus, surrounding queries that occur before and after a malicious query detected through blacklists help in estimating the cause of the malicious query. Our cause-based classification drastically reduces the number of malicious queries to be investigated because the investigation scope is limited to only representative queries in the classification results. In experiments, we have confirmed that our approach could group 388 malicious queries into 3 clusters, each consisting of queries with a common cause. These results indicate that administrators can briefly pursue all the causes by investigating only representative queries of each cluster, and thereby swiftly address the problem of infected machines in the network

    Priority-Based Hierarchical Operational Management for Multiagent-Based Microgrids

    No full text
    Electricity consumption in the world is constantly increasing, making our lives become more and more dependent on electricity. There are several new paradigms proposed in the field of power grids. In Japan, especially after the Great East Japan Earthquake in March 2011, the new power grid paradigms are expected to be more resilient to survive several difficulties during disasters. In this paper, we focus on microgrids and propose priority-based hierarchical operational management for multiagent-based microgrids. The proposed management is a new multiagent-based load shedding scheme and multiagent-based hierarchical architecture to realize such resilient microgrids. We developed a prototype system and performed an evaluation of the proposed management using the developed system. The result of the evaluation shows the effectiveness of our proposal in power shortage situations, such as disasters

    Clustering Malicious DNS Queries for Blacklist-Based Detection

    No full text

    A Cause-Based Classification Approach for Malicious DNS Queries Detected Through Blacklists

    No full text
    Some of the most serious security threats facing computer networks involve malware. To prevent this threat, administrators need to swiftly remove the infected machines from their networks. One common way to detect infected machines in a network is by monitoring communications based on blacklists. However, detection using this method has the following two problems: no blacklist is completely reliable, and blacklists do not provide sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. Therefore, simply matching communications with blacklist entries is insufficient, and administrators should pursue their detection causes by investigating the communications themselves. In this paper, we propose an approach for classifying malicious DNS queries detected through blacklists by their causes. This approach is motivated by the following observation: a malware communication is divided into several transactions, each of which generates queries related to the malware; thus, surrounding queries that occur before and after a malicious query detected through blacklists help in estimating the cause of the malicious query. Our cause-based classification drastically reduces the number of malicious queries to be investigated because the investigation scope is limited to only representative queries in the classification results. In experiments, we have confirmed that our approach could group 388 malicious queries into 3 clusters, each consisting of queries with a common cause. These results indicate that administrators can briefly pursue all the causes by investigating only representative queries of each cluster, and thereby swiftly address the problem of infected machines in the network

    Clustering Malicious DNS Queries for Blacklist-Based Detection

    No full text
    Some of the most serious threats to network security involve malware. One common way to detect malware-infected machines in a network is by monitoring communications based on blacklists. However, such detection is problematic because (1) no blacklist is completely reliable, and (2) blacklists do not provide the sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. In this paper, we propose a malicious DNS query clustering approach for blacklist-based detection. Unlike conventional classification, our cause-based classification can efficiently analyze malware communications, allowing infected machines in the network to be addressed swiftly
    corecore