103 research outputs found

    Field-induced incommensurate-to-commensurate transition in Ba_2CuGe_2O_7

    Full text link
    We report an observation of a commensurate-incommensurate phase transition in the Dzyaloshinskii-Moriya spiral antiferromagnet Ba_2 Cu Ge_2 O_7. The transition is induced by an external magnetic field applied along the c-axis of the tetragonal structure, i. e., in the plane of spin rotation. Bulk magnetic measurements and neutron diffraction experiments show that the transition occurs in a critical field Hc=2.1T. Experimental results for the period of the magnetic structure and magnetization as functions of magnetic field are in quantitative agreement with our exact analytical solution for Dzyaloshinskii's model of commensurate-incommensurate transitions in spiral magnets.Comment: 11 double column pages, 9 figures, submitted to PR

    High-Field Magnetization of Doped Spin-Peierls System Cu_<1-x>Zn_xGeO_3(Research in High Magnetic Fields)

    Get PDF
    We measured magnetizations of doped spin-Peierls Cu_Zn_xGeO_3 with x=0, 0.005, 0.010 and 0.020 in order to study effects of impurities on a magnetic phase. A rapid change of the magnetization associated with a phase transition from dimerized to other phases is seen. The magnetization above 16 T shows weak x and temperature dependence. A critical field associated with the phase transition decreases with increasing x. Effects of impurities on the magnetic phase are weaker than on the dimerized phase. The soliton model is applicable to the magnetic phase

    Temperature-dependent spin gap and singlet ground state in BaCuSi2O6

    Full text link
    Bulk magnetic measurements and inelastic neutron scattering were used to investigate the spin-singlet ground state and magnetic gap excitations in BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The results are well described by a model based on weakly interacting antiferromagnetic dimers. A strongly temperature-dependent dispersion in the gap modes was found. We suggest that the observed excitations are analogous to magneto-excitons in light rare-earth compounds, but are an intrinsic property of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct download: http://papillon.phy.bnl.gov/preprints/bacusio.htm

    Spin-Triplet Excitons in the S=1/2S=1/2 Gapped Antiferromagnet BaCuSi2_2O6_6: Electron Paramagnetic Resonance Studies

    Full text link
    BaCuSi2_2O6_6, a S=1/2S=1/2 quantum antiferromagnet with a double-layer structure of Cu2+^{2+} ions in a distorted planar-rectangular coordination and with a dimerized spin singlet ground state, is studied by means of the electron paramagnetic resonance technique. It is argued that multiple absorptions observed at low temperatures are intimately related to a thermally-activated spin-triplet exciton superstructure. Analysis of the angular dependence of exciton modes in BaCuSi2_2O6_6 allows us to accurately estimate anisotropy parameters. In addition, the temperature dependence of EPR intensity and linewidth is discussed.Comment: Submitted to Phys. Rev.

    Neutron Scattering Study of Temperature-Concentration Phase Diagram of (Cu1-xMgx)GeO3

    Full text link
    In doped CuGeO3 systems, such as (Cu1-xZnx)GeO3 and Cu(Ge1-xSix)O3, the spin-Peierls (SP) ordering (T<Tsp) coexists with the antiferromagnetic (AF) phase (T<TN<Tsp). Tsp decreases while TN increases with increasing x in low doping region. For higher x, however, the SP state disappears and only the AF state remains. These features are common for all the doped CuGeO3 systems so far studied, indicating the existence of universal T-x phase diagram. Recently, Masuda et al. carried out comprehensive magnetic susceptibility (chi) measurements of (Cu1-xMgx)GeO3, in which doping concentration can be controlled significantly better than the Zn doped systems. They found that TN suddenly jumps from 3.43 to 3.98K at the critical concentration xc sim 0.023 and that a drop in chi corresponding to the SP ordering also disappears at x>xc. They thus concluded that there is a compositional phase boundary between two distinct magnetic phases. To clarify the nature of two phases, we performed neutron-scattering measurements on (Cu1-xMgx)GeO3 single crystals with various x. Analysis of the data at fixed temperature points as a function of doping concentration has revealed sudden changes of order parameters at the critical concentration xc=0.027 +- 0.001. At finite temperatures below TN, the drastic increase of the AF moment takes place at xc. The spin-Peierls order parameter delta associated with lattice dimerization shows a precipitous decrease at all temperature below Tsp. However, it goes to zero above xc only at the low temperature limit.Comment: 9 pages, 9 figure

    The square-lattice spiral magnet Ba_2CuGe_2O_7 in an in-plane magnetic field

    Full text link
    The magnetic structure of Ba_2CuGe_2O_7 is investigated by neutron diffraction in magnetic fields applied along several directions in the (a,b)(a,b) plane of the crystal. In relatively weak fields, H0.5H\lesssim 0.5~T, the propagation vector of the spin-spiral rotates to form a finite angle with the field direction. This angle depends on the orientation of HH itself. The rotation of the propagation vector is accompanied by a re-orientation of the plane of spin rotation in the spiral. The observed behaviour is well described by a continuous-limit form of a free energy functional that includes exchange and Dzyaloshinskii-Moriya interactions, as well as the Zeeman energy and an empirical anisotropy term.Comment: 7 pages, 6 figure

    Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study

    Full text link
    Comprehensive neutron scattering studies were carried out on a series of high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was determined for each sample using Electron Probe Micro-Analysis. The measured Zn concentrations were found to be 40-80% lower than the nominal values. Nevertheless the measured concentrations cover a wide range which enables a systematic study of the effects due to Zn-doping. We have confirmed the coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low temperatures and the measured phase diagram is presented. Most surprisingly, long-range AF ordering occurs even in the lowest available Zn concentration, x=0.42%, which places important constraints on theoretical models of the AF-SP coexistence. Magnetic excitations are also examined in detail. The AF excitations are sharp at low energies and show no considerable broadening as x increases indicating that the AF ordering remains long ranged for x up to 4.7%. On the other hand, the SP phase exhibits increasing disorder as x increases, as shown from the broadening of the SP excitations as well as the dimer reflection peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to Phys. Rev. B. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.htm
    corecore