69 research outputs found

    Involvement of the TCR Cβ FG Loop in Thymic Selection and T Cell Function

    Get PDF
    The asymmetric disposition of T cell receptor (TCR) Cβ and Cα ectodomains creates a cavity with a side-wall formed by the rigid Cβ FG loop. To investigate the significance of this conserved structure, we generated loop deletion (βΔFG) and βwt transgenic (tg) mice using the TCR β subunit of the N15 CTL. N15βwt and N15βΔFG H-2b animals have comparable numbers of thymocytes in S phase and manifest developmental progression through the CD4−CD8− double-negative (DN) compartment. N15βΔFG facilitates transition from DN to CD4+8+ double-positive (DP) thymocytes in recombinase activating gene (RAG)-2−/− mice, showing that pre-TCR function remains. N15βΔFG animals possess ∼twofold more CD8+ single-positive (SP) thymocytes and lymph node T cells, consistent with enhanced positive selection. As an altered Vα repertoire observed in N15βΔFG mice may confound the deletion's effect, we crossed N15αβ TCR tg RAG-2−/− with N15βΔFG tg RAG-2−/− H-2b mice to generate N15αβ RAG-2−/− and N15αβ.βΔFG RAG-2−/− littermates. N15αβ.βΔFG RAG-2−/− mice show an 8–10-fold increase in DP thymocytes due to reduced negative selection, as evidenced by diminished constitutive and cognate peptide-induced apoptosis. Compared with N15αβ, N15αβ.βΔFG T cells respond poorly to cognate antigens and weak agonists. Thus, the Cβ FG loop facilitates negative selection of thymocytes and activation of T cells

    Evaluation of prognostic significance of granulocyte-related factors in cancer patients undergoing personalized peptide vaccination

    Get PDF
    Since cancer vaccines do not always elicit beneficial effects in treated patients, identification of biomarkers for predicting clinical outcomes would be highly desirable. We previously reported that abnormal granulocytes present in peripheral blood mononuclear cells (PBMC) may contribute to poor prognosis in advanced prostate cancer patients receiving personalized peptide vaccination (PPV). In the current study, we examined whether soluble factors derived from granulocytes, such as matrix metalloproteinase 9 (MMP-9), myeloperoxidase (MPO), and arginase 1 (ARG1), and inhibitory cytokine TGFβ in pre-vaccination plasma were useful for predicting prognosis after PPV in advanced cancer patients. In biliary tract cancer (n=25), multivariate Cox regression analysis demonstrated that patients with higher plasma MMP-9 levels had a significantly worse overall survival (OS) [hazard ratio (HR) = 4.637, 95% confidence interval (CI) = 1.670 - 12.877, P = 0.003], whereas MPO, ARG1, or TGFβ levels were not correlated with OS. Similarly, patients with higher MMP-9 levels showed worse prognosis than those with lower MMP-9 levels in other types of advanced cancers, including non-small cell lung cancer (n=32, P = 0.037 by log-rank test), and pancreatic cancer (n=41, P = 0.042 by log-rank test). Taken together, plasma MMP-9 levels before vaccination might be potentially useful as a biomarker for selecting advanced cancer patients who would benefit from PPV.This study was supported by a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct), Ministry of Education, Culture, Sports, Science and Technology of Japan; a research program of the Regional Innovation Cluster Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan; and Kurozumi Medical Foundation

    Immunological evaluation of peptide vaccination for cancer patients with the HLA-A26 allele

    Get PDF
    To develop a peptide vaccine for cancer patients with the HLA-A26 allele, which is a minor population worldwide, we investigated the immunological responses of HLA-A26+ ⁄ A26+ cancer patients to four different CTL epitope peptides under personalized peptide vaccine regimens. In personalized peptide vaccine regimens, two to four peptides showing positive peptide-specific IgG responses in pre-vaccination plasma were selected from the four peptide candidates applicable for HLA-A26+ ⁄ A26+ cancer patients and administered s.c. Peptide-specific CTL and IgG responses along with cytokine levels were measured before and after vaccination. Cell surface markers in PBMCs and plasma cytokine levels were also measured. In this study, 21 advanced cancer patients, including seven lung, three breast, two pancreas, and two colon cancer patients, were enrolled. Their HLAA26 genotypes were HLA-A26:01 (n = 24), HLA-A26:03 (n = 10), and HLA-A26:02 (n = 8). One, 14, and 6 patients received two, three, and four peptides, respectively. Grade 1 or 2 skin reactions at the injection sites were observed in the majority of patients, but no severe adverse events related to the vaccination were observed. Peptide-specific CTL responses were augmented in 39% or 22% of patients after one or two cycles of vaccination, respectively. Notably, peptide-specific IgG were augmented in 63% or 100% of patients after one or two cycles of vaccination, respectively. Personalized peptide vaccines with these four CTL epitope peptides could be feasible for HLA-A26+ advanced cancer patients because of their safety and higher rates of immunological responses.This study was supported in part by the Japan Agency for Medical Research and development, AMED, a research program of the Regional Innovation Cluster Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant from the Sendai Kousei Hospital

    Clinical Study Randomized Phase II Study of Docetaxel plus Personalized Peptide Vaccination versus Docetaxel plus Placebo for Patients with Previously Treated Advanced Wild Type EGFR Non-Small-Cell Lung Cancer

    Get PDF
    Objectives. To evaluate the efficacy and safety of personalized peptide vaccination (PPV) combined with chemotherapy for patients with previously treated advanced non-small-cell lung cancer (NSCLC). Patients and Methods. Previously treated PS0-1 patients with IIIB/IV EGFR (epidermal growth factor receptor) wild genotype NSCLC were randomly assigned to docetaxel (60 mg/m 2 on Day 1) plus PPV based on preexisting host immunity or docetaxel plus placebo. Docetaxel administration was repeated every 3 weeks until disease progression. Personalized peptides or placebo was injected subcutaneously weekly in the first 8 weeks and biweekly in subsequent 16 weeks. The primary efficacy endpoint was progression-free survival (PFS). Results. PPV related toxicity was grade 2 or less skin reaction. The median PFS for placebo arm and PPV arm was 52 days and 59 days, respectively. There was no significant difference between two arms by log-rank test ( = 0.42). Interestingly, PFS and overall survival (OS) in humoral immunological responder were significantly longer than those in nonresponder. Conclusion. PPV did not improve the survival in combination with docetaxel for previously treated advanced NSCLC. However, PPV may be efficacious for the humoral immunological responders and a further clinical investigation is needed

    EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation

    Get PDF
    Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients
    corecore