23 research outputs found

    Analyzing structural characteristics of object category representations from their semantic-part distributions

    Full text link
    Studies from neuroscience show that part-mapping computations are employed by human visual system in the process of object recognition. In this work, we present an approach for analyzing semantic-part characteristics of object category representations. For our experiments, we use category-epitome, a recently proposed sketch-based spatial representation for objects. To enable part-importance analysis, we first obtain semantic-part annotations of hand-drawn sketches originally used to construct the corresponding epitomes. We then examine the extent to which the semantic-parts are present in the epitomes of a category and visualize the relative importance of parts as a word cloud. Finally, we show how such word cloud visualizations provide an intuitive understanding of category-level structural trends that exist in the category-epitome object representations

    Indiscapes: Instance Segmentation Networks for Layout Parsing of Historical Indic Manuscripts

    Full text link
    Historical palm-leaf manuscript and early paper documents from Indian subcontinent form an important part of the world's literary and cultural heritage. Despite their importance, large-scale annotated Indic manuscript image datasets do not exist. To address this deficiency, we introduce Indiscapes, the first ever dataset with multi-regional layout annotations for historical Indic manuscripts. To address the challenge of large diversity in scripts and presence of dense, irregular layout elements (e.g. text lines, pictures, multiple documents per image), we adapt a Fully Convolutional Deep Neural Network architecture for fully automatic, instance-level spatial layout parsing of manuscript images. We demonstrate the effectiveness of proposed architecture on images from the Indiscapes dataset. For annotation flexibility and keeping the non-technical nature of domain experts in mind, we also contribute a custom, web-based GUI annotation tool and a dashboard-style analytics portal. Overall, our contributions set the stage for enabling downstream applications such as OCR and word-spotting in historical Indic manuscripts at scale.Comment: Oral presentation at International Conference on Document Analysis and Recognition (ICDAR) - 2019. For dataset, pre-trained networks and additional details, visit project page at http://ihdia.iiit.ac.in
    corecore