76 research outputs found
ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux
Background Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. Methods A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)-driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN1/−, 205 hMYCN+/1 mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan-Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. Results Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the "poor prognosis” expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). Conclusion ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic interventio
Novel Selection Marker for Mammalian Cell Transfection
The availability of selectable markers suitable for use in mammalian cells has permitted the analysis of the influence of the stable overexpression of single or multiple genes on specific cell properties. This powerful technique has led directly to many fundamental advances in molecular biology and increased our overall understanding of cell growth and regulatory events. Although a variety of selectable markers are currently available, some cell lines continue to be naturally resistant to certain markers, making direct selection difficult or not feasible. Thus, the characterization of additional cell selectable markers continues to be of interest. We have developed a novel selectable marker based on mitomycin C resistance that is suitable for stable transfection of mammalian cells. This system is based on the ability of the mcrA gene, isolated from Streptomyces lavendulae, to confer mitomycin C resistance to both bacterial and mammalian cells by expression of the MCRA protein. Here we demonstrate that mcrA can be used as a selectable gene marker in Chinese hamster ovary cells when cells transfected with the mcrA gene are either pulsed or cultured continuously with mitomycin C. This unique selection system may be of use for transfection of cells that are resistant to currently available selectable markers
- …