94 research outputs found
Recommended from our members
The Benefits of Integrated Chiller Retrofits: Excerpts from Case Studies
Recommended from our members
Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers
This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs
Recommended from our members
How Does Your Data Center Measure Up? Energy Efficiency Metrics and Benchmarks for Data Center Infrastructure Systems
Data centers are among the most energy intensive types of facilities, and they are growing dramatically in terms of size and intensity [EPA 2007]. As a result, in the last few years there has been increasing interest from stakeholders - ranging from data center managers to policy makers - to improve the energy efficiency of data centers, and there are several industry and government organizations that have developed tools, guidelines, and training programs. There are many opportunities to reduce energy use in data centers and benchmarking studies reveal a wide range of efficiency practices. Data center operators may not be aware of how efficient their facility may be relative to their peers, even for the same levels of service. Benchmarking is an effective way to compare one facility to another, and also to track the performance of a given facility over time. Toward that end, this article presents the key metrics that facility managers can use to assess, track, and manage the efficiency of the infrastructure systems in data centers, and thereby identify potential efficiency actions. Most of the benchmarking data presented in this article are drawn from the data center benchmarking database at Lawrence Berkeley National Laboratory (LBNL). The database was developed from studies commissioned by the California Energy Commission, Pacific Gas and Electric Co., the U.S. Department of Energy and the New York State Energy Research and Development Authority
Recommended from our members
Minimizing Reheat Energy Use in Laboratories
HVAC systems that are designed without properly accounting for equipment load variation across laboratory spaces in a facility can significantly increase simultaneous heating and cooling, particularly for systems that use zone reheat for temperature control. This best practice guide describes the problem of simultaneous heating and cooling resulting from load variations, and presents several technological and design process strategies to minimize it. This guide is one in a series created by the Laboratories for the 21st century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories
Recommended from our members
Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)
There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use
Recommended from our members
Metrics and Benchmarks for Energy Efficiency in Laboratories
A wide spectrum of laboratory owners, ranging from universities to federal agencies, have explicit goals for energy efficiency in their facilities. For example, the Energy Policy Act of 2005 (EPACT 2005) requires all new federal buildings to exceed ASHRAE 90.1-2004 [1] by at least 30%. A new laboratory is much more likely to meet energy efficiency goals if quantitative metrics and targets are specified in programming documents and tracked during the course of the delivery process. If not, any additional capital costs or design time associated with attaining higher efficiencies can be difficult to justify. This article describes key energy efficiency metrics and benchmarks for laboratories, which have been developed and applied to several laboratory buildings--both for design and operation. In addition to traditional whole building energy use metrics (e.g. BTU/ft{sup 2}.yr, kWh/m{sup 2}.yr), the article describes HVAC system metrics (e.g. ventilation W/cfm, W/L.s{sup -1}), which can be used to identify the presence or absence of energy features and opportunities during design and operation
Recommended from our members
Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431: Appendices
This report is the appendices to a companion report, prepared in response to the request from Congress stated in Public Law 109-431 (H.R. 5646),"An Act to Study and Promote the Use of Energy Efficient Computer Servers in the United States." This report assesses current trends in energy use and energy costs of data centers and servers in the U.S. (especially Federal government facilities) and outlines existing and emerging opportunities for improved energy efficiency. It also makes recommendations for pursuing these energy-efficiency opportunities broadly across the country through the use of information and incentive-based programs
Recommended from our members
Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431: Appendices
This report is the appendices to a companion report, prepared in response to the request from Congress stated in Public Law 109-431 (H.R. 5646),"An Act to Study and Promote the Use of Energy Efficient Computer Servers in the United States." This report assesses current trends in energy use and energy costs of data centers and servers in the U.S. (especially Federal government facilities) and outlines existing and emerging opportunities for improved energy efficiency. It also makes recommendations for pursuing these energy-efficiency opportunities broadly across the country through the use of information and incentive-based programs
Recommended from our members
High-Performance fume hood
Lawrence Berkeley National Laboratory researchers have developed a new fume hood -- the Berkeley Lab High-Performance Fume Hood. In addition to cutting exhaust airflow requirements by 50-70%, the hood offers lower-cost installations than state-of-the-art VAV systems, and enhanced worker safety by introducing clean room-air into the operator's breathing zone. Further, installing the low-flow High-Performance Fume Hood can "free up" airflow capacity in laboratories starved for air
- …