731 research outputs found
Multiple Scale-Free Structures in Complex Ad-Hoc Networks
This paper develops a framework for analyzing and designing dynamic networks
comprising different classes of nodes that coexist and interact in one shared
environment. We consider {\em ad hoc} (i.e., nodes can leave the network
unannounced, and no node has any global knowledge about the class identities of
other nodes) {\em preferentially grown networks}, where different classes of
nodes are characterized by different sets of local parameters used in the
stochastic dynamics that all nodes in the network execute. We show that
multiple scale-free structures, one within each class of nodes, and with
tunable power-law exponents (as determined by the sets of parameters
characterizing each class) emerge naturally in our model. Moreover, the
coexistence of the scale-free structures of the different classes of nodes can
be captured by succinct phase diagrams, which show a rich set of structures,
including stable regions where different classes coexist in heavy-tailed and
light-tailed states, and sharp phase transitions. Finally, we show how the
dynamics formulated in this paper will serve as an essential part of {\em
ad-hoc networking protocols}, which can lead to the formation of robust and
efficiently searchable networks (including, the well-known Peer-To-Peer (P2P)
networks) even under very dynamic conditions
Structured process improvement in facilities management organisations using the SPICE FM approach
- …
